Cardinal Temperatures and Thermal Time for Germination of Sarawak Traditional Rice

https://doi.org/10.55230/mabjournal.v52i6.2630

Authors

  • Franalyne Lyenang Luing Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Malaysia
  • Hollena Nori Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Malaysia

Keywords:

Development, Growing degree days, Linear model, Oryza sativa, Paddy

Abstract

Germination of two rice landraces, namely Bario Sederhana and Biris, was determined from twelve temperatures (12.5 – 40 ºC) in a series of incubation experiments. The cardinal temperatures and thermal time for germination were estimated from a ‘broken-stick’ linear model. Both landraces had a Tb of 10 ºC, Topt between 32 – 33 ºC, and Tmax of 43 ºC. At the sub-optimal temperatures, the thermal time for germination was 62 ºCd for Bario Sederhana and 53 ºCd for Biris. Within the supra-optimal range (Topt to Tmax), both landraces required 27-29 ºCd for seed germination. The maximum final germination for Bario Sederhana was 93% at 30 ºC while Biris had 100% seeds population germinated at 27.5 ºC.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ali, M.G., Naylor, R.E.L. & Matthews, S. 2003. Effect of a Range of Constant Temperatures on Germination of Fifteen Bangladeshi Rice (Oryza sativa L.) Cultivars. Pakistan Journal of Biological Sciences, 6: 1070-1076. DOI: https://doi.org/10.3923/pjbs.2003.1070.1076

Angus, J.F., Cunningham, R.B., Moncur, M.W. & Mackenzie, D.H. 1981. Phasic development in field crops I. Thermal response in the seedling phase. Field Crops Research, 3: 365-378. DOI: https://doi.org/10.1016/0378-4290(80)90042-8

Baker, J.T., Boote, K.J. & Allen Jr., L.H. 1995. Potential climate change effects on rice: Carbon dioxide and temperature. In: Climate Change and Agriculture: Analysis of Potential International Impacts. C. Rosenzweig, J.T. Ritchie, J.W. Jones, G.Y. Tsuji, & P. Hildebrand (Eds.). pp. 31-47. DOI: https://doi.org/10.2134/asaspecpub59.c2

Begum, M., Juraimi, A.S., Amartalingam, R., Rastan, S.O.B.S. & Man, A. Bin. 2008. Growth and development of Fimbristylis miliacea (L.)Vahl. Biotropia, 15(1): 1-11. DOI: https://doi.org/10.11598/btb.2008.15.1.1

Benvenuti, S., Dinelli, G. & Bonetti, A. 2004. Germination ecology of Leptochloa chinensis: A new weed in the Italian rice agro-environment. Weed Research, 44(2): 87-96. DOI: https://doi.org/10.1111/j.1365-3180.2003.00376.x

Bonhomme, R. 2000. Bases and limits to using "degree.day" units. European Journal of Agronomy, 13(1): 1-10. DOI: https://doi.org/10.1016/S1161-0301(00)00058-7

Bonhomme, R., Derieux, M. & Edmeades, G. 1994. Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Science, 34: 156-164. DOI: https://doi.org/10.2135/cropsci1994.0011183X003400010028x

Brandon, Y.P.H., Bhave, M. & Siaw S.H. 2019. Potential protective effects of rice seedling extracts of a Malaysian rice variety, Biris, against doxorubicin-induced cytotoxicity. Tropical Life Sciences Research, 30(2): 71-90. DOI: https://doi.org/10.21315/tlsr2019.30.2.6

Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P. & Mackauer, M. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology, 11(2): 431-438. DOI: https://doi.org/10.2307/2402197

Cave, R.L., Birch, C.J., Hammer, G.L., Erwin, J.E. & Johnston, M.E. 2011. Cardinal temperatures and thermal time for seed germination of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae). HortScience, 46(5): 753-758. DOI: https://doi.org/10.21273/HORTSCI.46.5.753

Chih, H.Y. 2016. Physical and Chemical Properties of Selected Sarawak Traditional Rice. Universiti Malaysia Sarawak. (BSc. thesis)

Draper, N.R. & Smith, H. 1998. Applied Regression Analysis. John Wiley & Sons Inc., New York. 736 pages. DOI: https://doi.org/10.1002/9781118625590

Elahifard, E. & Mijani, S. 2014. Effect of temperature and light on germination behavior of PSII inhibiting herbicide resistant and susceptible junglerice (Echinochloa colona) populations. Australian Journal of Crop Science, 8(9): 1304-1310.

Farrell, T.C., Fox, K.M., Williams, R.L. & Fukai, S. 2006. Genotypic variation for cold tolerance during reproductive development in rice: Screening with cold air and cold water. Field Crops Research, 98(2-3): 178-194. DOI: https://doi.org/10.1016/j.fcr.2006.01.003

Guillemin, J.P., Gardarin, A., Granger, S., Reibel, C., Munier-Jolain, N. & Colbach, N. 2013. Assessing potential germination period of weeds with base temperatures and base water potentials. Weed Research, 53(1): 76-87. DOI: https://doi.org/10.1111/wre.12000

ISTA. 1993. International rules for seed testing. Zurich, Switzerland.

Khazanah Research Institute. 2018. Monograph of Paddy Smallholders in Bario: Working Paper. 1-32.

Kim, H., Horie, T., Nakagawa, H. & Wada, K. 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of rice. II. The effect of yield and its component of Akihikari rice. Japanese Journal of Crop Science, 65: 644-651. DOI: https://doi.org/10.1626/jcs.65.644

Lai, K.F., Kueh, K.H. & Vu Thanh, T. 2017. Potential of Sarawak Traditional Rice for Export. In: Proceedings of Persidangan Padi Kebangsaan 2017, 43-53.

Libin, A., King, P.J.H., Ong, K.H., Chubo, J.K. & Sipen, P. 2012. Callus induction and plant regeneration of Sarawak rice (Oryza sativa L.) variety Biris. African Journal of Agricultural Research, 7(30): 4260-4265. DOI: https://doi.org/10.5897/AJAR12.587

Matsushima, S., Tanaka, T. & Hoshino, T. 1964. Analysis of yield determining process and its application to yield-prediction and culture improvement of lowland rice. LXX. Combined effect of air temperature and water temperature at different stages of growth on the grain yield and its components. Japanese Journal of Crop Science, 33(1): 53-58. DOI: https://doi.org/10.1626/jcs.33.53

Nicholas, D., Hazila, K.K., Chua, H.P. & Rosniyana, A. 2014. Nutritional value and glycemic index of Bario rice varieties. Journal of Tropical Agriculture and Food Science, 42(1): 1-8.

Nori, H., Moot, D.J. & Black, A.D. 2014. Thermal time requirements for germination of four annual clover species. New Zealand Journal of Agricultural Research, 57(1): 30-37. DOI: https://doi.org/10.1080/00288233.2013.863786

Nori, H., Sani, S.A. & Tuen, A.A. 2009. Chemical and physical properties of Sarawak (East Malaysia) rice straws. Livestock Research for Rural Development, 21, Article #122.

Puteh, A.B., Rosli, R. & Mohamad, R.B. 2010. Dormancy and cardinal temperatures during seed germination of five weedy rice (Oryza spp.) strains. Pertanika Journal of Tropical Agricultural Science, 33(2): 243-250.

Ronie, M.E., Abdul Aziz, A.H., Mohd Noor, N.Q.I., Yahya, F. & Mamat, H. 2022. Characterisation of Bario rice flour varieties: Nutritional compositions and physicochemical properties. Applied Sciences, 12(18): 9064. DOI: https://doi.org/10.3390/app12189064

Satake, T. & Yoshida, S. 1978. High temperature-induced sterility in indica rices at flowering. Japanese Journal of Crop Science, 47(1): 6-17. DOI: https://doi.org/10.1626/jcs.47.6

Schultink, G., Amaral, N. & Mokma, D. 1987. Users Guide to the CRIES Agro-Economic Information System Yield Model. 125 pages.

Shaban, M. 2013. Effect of water and temperature on seed germination and emergence as a seed hydrothermal time model. International Journal of Advanced Biological and Biomedical Research, 1(12): 1686-1691.

Thomas, R., Wan-Nadiah, W.A. & Bhat, R. 2013. Physiochemical properties, proximate composition, and cooking qualities of locally grown and imported rice varieties marketed in Penang, Malaysia. International Food Research Journal, 20(3): 1345-1351.

Tilebeni, H.G., Yousefpour, H., Farhadi, R. & Golpayegani, A. 2012. Germination Behavior of Rice (Oryza sativa L.) Cultivars Seeds to Difference Temperatures. Advances in Environmental Biology, 6(2): 573-577.

Villa, T.C.C., Maxted, N., Scholten, M. & Ford-Lloyd, B. 2005. Defining and identifying crop landraces. Plant Genetic Resources, 3(3): 373-384. DOI: https://doi.org/10.1079/PGR200591

Weikay, Y. & Hunt, L. 1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 84: 607-614. DOI: https://doi.org/10.1006/anbo.1999.0955

Wong, S.C., Yiu, P.H., Bong, S.T.W., Lee, H.H., Neoh, P.N.P. & Rajan, A. 2009. Analysis of Sarawak Bario rice diversity using microsatellite markers. American Journal of Agricultural and Biological Sciences, 4(4): 298-304. DOI: https://doi.org/10.3844/ajabssp.2009.298.304

Yoshida, S. 1981. Fundamentals of Rice Crop Science. International Rice Research Institute, Los Banos, Phillipines. 269 pages.

Published

30-12-2023

How to Cite

Luing, F. L., & Nori, H. (2023). Cardinal Temperatures and Thermal Time for Germination of Sarawak Traditional Rice. Malaysian Applied Biology, 52(6), 101–109. https://doi.org/10.55230/mabjournal.v52i6.2630

Issue

Section

Research Articles