Toxicity Assessment on Odonata Larvae Survivability in Monitoring Heavy Metal Contaminations


  • Suhaila Ab Hamid School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
  • Ahmad Hadri Jumaat Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor


Aquatic insects, aquatic water bodies, bioindicator, Cadmium, Manganese, Zinc.


The aquatic ecosystem has been suffering a continuous increase of metal contamination such as Cadmium (Cd), Zinc (Zn), and Manganese (Mn) due to their inadequate high potential to disturb the aquatic organism population. Meanwhile, some insects such as Pseudagrion microcephalum and Ischnura senegalensis can be used as biological indicators to determine stream health. Therefore, this study was conducted to determine the relationship between the heavy metal concentration and its effect on the survivability of two different species of damselfly larvae from the family Coenagrionidae; Pseudagrion microcephalum and Ischnura senegalensis. In this study, there is a significant effect of three heavy metal exposures on the survivability of P.microcephalum (F11,180=14.50, P=0.00) and I.senegalensis (F11,180 =15.10, P=0.00). Pseudagrion microcephalum is more tolerable towards Mn (F3,60=13.19, P=0.00) and Zn (F3,60=16.07, P=0.00) at different concentrations compared to I.senegalensis. In the meantime, I.senegalensis was tolerable to Cd exposure. The LC50 value of Cd was much lower than other heavy metals. Besides, the LT50 value of Cd at 200 mg/L was the lowest on P. microcephalum (31 hr) and I. senegalensis (36 hr) compared to other heavy metals. Cd was the most toxic to P.microcephalum and I.senegalensis larvae followed by zinc and manganese (LC50 & LT50=Cd > Zn > Mn). It is concluded that I.senegalensis was tolerant towards Cd, Mn, and Zn compared to P.microcephalum and Cd had the fastest-acting toxicity and significantly reduced the lethal time of mortality on both species.


Download data is not yet available.


Metrics Loading ...


Ali, H., Khan, E. & Ilahi, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019: 6730305. DOI:

Azam, I., Afsheen, S., Zia, A., Javed, M., Saeed, R., Sarwar, M. K. & Munir, B. 2015. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Research International, 2015: 942751. DOI:

Ben-Shahar, Y. 2018. The Impact of Environmental Mn Exposure on Insect Biology. Frontier Genetic 9: 70. DOI:

Brinkman, S.F. & Johnston, W.D. 2008. Acute toxicity of aqueous copper, cadmium, and zinc to the Mayfly Rhithrogena hageni. Archives of Environmental Contamination and Toxicology, 54(3): 466- 472. DOI:

Brix, K.V., De Forest, D.K. & Adams, W.J. 2011. The sensitivity of aquatic insects to divalent metals: A comparative analysis of laboratory and field data. Science Total Environment, 409: 4187-4197. DOI:

Buchwalter, D.B., Cain, D.J., Clements, W.H. & Luoma, S.N. 2007. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects. Environment Science and Technology, 41(13): 4821-4828. DOI:

Cadmus, P., Kotalik, C.J., Jefferson, A.L., Wheeler, S.H., McMahon, A.E. & Clements, W.H. 2020. Size-dependent sensitivity of aquatic insects to metals. Environmental Science and Technology, 54(2): 955-964. DOI:

Carvalho F.G., Silva-Pinto N., Oliveira-Junior J.M.B. & Juen L. 2013. Effects of marginal vegetation removal on Odonata communities. Acta Limnology Brasilisia, 25: 10-18. DOI:

César Dos Santos Lima J., Gazonato Neto A.J., de Pádua Andrade D., Freitas, E.C, Moreira, R.A, Miguel, M., Daam, M.A. & Rocha, O. 2019. Acute toxicity of four metals to three tropical aquatic invertebrates: The dragonfly Tramea cophysa and the ostracods Chlamydotheca sp. and Strandesia trispinosa. Ecotoxicology and Environmental Safety, 180: 535-541. DOI:

de Barros, C.M., Da Fonte Carvalho-Martins, D., Mello, A.D.A., Salgado, L.T. & Allodi, S. 2017. Nitric-oxide generation induced by metals plays a role in their accumulation by Phallusia nigra hemocytes. Marine Pollution Bulletin, 124: 441-448. DOI:

Debecker, S., Dinh, K.V. & Stoks, R. 2017. Strong delayed interactive effects of metal exposure and warming: Latitude-dependent synergisms persist across metamorphosis. Environmental Science and Technology, 51: 2409-2417. DOI:

Department of Environment (DOE) 2005. Interim National Water Quality Standards (INWQS) for Malaysia.

Di Veroli, A., Santoro, F., Pallottini, M., Selvaggi, R., Scardazza, F., Cappelletti, D. & Goretti, E. 2014. Deformities of chironomid larvae and heavy metal pollution: From laboratory to field studies. Chemosphere, 112: 9-17. DOI:

Dittman E.K. & Buchwalter, D.B. 2010. Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn (II) thiol scavenging. Environmental Science Technology, 44(23): 9182. DOI:

Dorji, T. & Nidup, T. 2020. Study of nymphs of Odonata (Ansioptera & Zygoptera) as a bio-indicator for aquatic ecosystem: A case study in Trashigang district. Sherub-Doenme: The Research Journal of Sherbets College, 13: 1-16.

Girgin S., Kazanci N. & Dugel M. 2010. Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques. International Journal Environmental Sciences Technology, 7: 653-664. DOI:

Golovanova, I.L. 2008. Effects of heavy metals on the physiological and biochemical status of fishes and aquatic invertebrates. Inland Water Biology, 1(1): 93-101. DOI:

Harford, A.J., Mooney T.J., Trenfield M.A. & van Dam, R.A. 2015. Manganese (Mn) toxicity to tropical freshwater species in low hardness water. Environmental Toxicology and Chemistry, 34(12): 2856-2863. DOI:

Hassall, C. 2015. Odonata as candidate macroecological barometers for global climate change. Freshwater Sciences, 34: 1040-1049. DOI:

Ilahi, I., Yousafzai, A.M., Ul-Haq, T., Rahim, A., Attaullah, M. & Naz, D. 2020. Toxicity to Lead, Cadmium and Copper in nymphs of three Odonate species. Bioscience Research, 17(4): 2448-2464.

Khati, W., Ouali, K., Mouneyrac, C. & Ali, B. 2012. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use in biomonitoring. Energy Procedia, 18: 784-794. DOI:

Kim, K.S., Funk, D.H. & Buchwalter, D.B. 2012. Dietary (periphyton) and aqueous Zn bioaccumulation dynamics in the mayfly Centroptilum triangulifer. Ecotoxicology, 21: 2288-2296. DOI:

Li K., Chen J., Jin P., Li J., Wang J. & Shu Y. 2018. Effects of Cd accumulation on cutworm Spodoptera litura larvae via Cd treated Chinese flowering cabbage Brassica campestris and artificial diets. Chemosphere, 200: 151-163. DOI:

Lidman, J., Jonsson, M. & Åsa, M.M.B. 2020. The effect of lead (Pb) and zinc (Zn) contamination on aquatic insect community composition and metamorphosis. Science of The Total Environment, 734: 139406. DOI:

Luo, M., Cao, H. M., Fan, Y.Y., Zhou, X.C., Chen, J.X., Chung, H. & Wei, H.Y. 2020. Bioaccumulation of Cadmium affects development, mating behavior, and fecundity in the Asian Corn Borer, Ostrinia furnacalis. Insects, 11: 7. DOI:

Martinek, P., Kula, E. & Hedbávný, J. 2018. Reactions of Melolontha hippocastani adults to high manganese content in food. Ecotoxicology Environmental Safety, 148: 37-43. DOI:

Miguel, T., Oliveira-Junior, J. M., Ligeiro, R. & Juen, L. 2017. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators, 81: 555-566. DOI:

Monteiro-Júnior C.S., Couceiro S.R.M., Hamada N. & Juen L. 2013. Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. International Journal Odonatology, 16: 135-44. DOI:

Monteiro-Júnior C.S., Juen L. & Hamada N. 2014. Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landscape Urban Plan, 127: 28-40. DOI:

Okude, G., Futahashi, R., Tanahashi, M. & Fukatsu, T. 2017. Laboratory rearing system for Ischnura senegalensis (Insecta: Odonata) Enables detailed description of larvae development and morphogenesis in dragonfly. Zoological Science, 34: 386-397. DOI:

Oliveira-Junior, J.M. & Leandro, J. 2019. Structuring of dragonfly communities (Insecta: Odonata) in Eastern Amazon: Effects of environmental and spatial factors in preserved and altered streams. Insects 10: 332. DOI:

Oliveira-Junior, J.M., Shimano, Y., Gardner, T., Hughes, R.M., Júnior, P.D. & Juen, L. 2015. Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Australia Ecology, 40: 733-744. DOI:

Oweson, C., Sköld, H., Pinsino, A., Matranga, V. & Hernroth, B. 2008. Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquatic Toxicology, 89: 75-81. DOI:

Poteat, M.D., Díaz-Jaramillo, M. & Buchwalter, D.B. 2012. Divalent metal (Ca,Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna. Journal Experimental Biology, 215: 1575-1583. DOI:

Rivero A., Giron D. & Casas J. 2001. Lifetime allocation of juvenile and adult nutritional resources to egg production in a holometabolous insect. Proceedings of the Royal Society B: Biological Sciences, 268: 1231-1237. DOI:

Schrik, M. 2016. Sublethal Toxicity of Copper on urban dwelling damselflies. All Regis University Theses. 714 pp.

Seidu, I., Danquah, E., Ayine-Nsor, C., Amaning-Kwarteng, D. & Lancaster, L.T. 2017. Odonata community structure patterns of land use in the Atewa Range Forest Reserve, Eastern Region (Ghana). International Journal Odonatology, 20: 173-189. DOI:

Seidu, I., Nsor, C. A., Danquah, E., Tehoda, P. & Oppong, S.K. 2019. Patterns of Odonata Assemblages in Lotic and Lentic Systems in the Ankasa Conservation Area, Ghana. International Journal of Zoology, 1-14. DOI:

Sfakianakis D.G., Renieri E., Kentouri M. & Tsatsakis A.M. 2015. Effect of heavy metals on fish larvae deformities: A review. Environmental Research, 137: 246-255. DOI:

Tandin, D. & Tshering, N. 2020. Study of nymphs of Odonata (Ansioptera & Zygoptera) as a bio-indicator for aquatic ecosystem: A case study in Trashigang District. Sherub Doenme: The Research Journal of Sherubtse College.13: 1-16

Tchounwou, P.B., Yedjou C.G., Patlolla, A.K. & Sutton, D.J. 2012. Heavy metals toxicity and the environment. Experientia Supplementum, 101: 133-164. DOI:

Tollet, V.D., Benvenutti, E.L., Deer, A. & Rice T.M. 2008. Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). Archives Environmental Contamination Toxicology, 56: 77-84. DOI:

Villalobos-Jiménez, G., Alison, M.D. & Christopher H. 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: A review. European Journal Entomology, 113: 217-232. DOI:

Youbi, A., Zerguine, K., Houilia, A., Farfar, K., Soumati, B., Berrebbah, H., Djebar, M.R. & Souiki, L. 2020. Potential use of morphological deformities in Chironomus (Diptera: Chironomidae) as a bioindicator of heavy metals pollution in North-East Algeria. Environmental Science and Pollution Research International, 27(8): 8611-8620. DOI:

Zhang, L., Liu X., You L., Zhou D., Yu J., Zhao J., Feng J. & Wu, H. 2011. Toxicological effects induced by cadmium in gills of manila clam Ruditapes philippinarum using NMR-based metabolomics. Clean Soil Air Water, 39(11): 989-995. DOI:

Zheng, X., Zang, W.C., Yan, Z.G., Hong, Y.G., Liu, Z.T., Yi, X.L., Wang, X.N., Liu, T.T. & Zhou, L.M. 2015. Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology, 24: 621-1631. DOI:



How to Cite

Ab Hamid, S., & Jumaat, A. H. (2023). Toxicity Assessment on Odonata Larvae Survivability in Monitoring Heavy Metal Contaminations. Malaysian Applied Biology, 52(6), 47–56.



Research Articles

Funding data