Toxicity Assessment on Odonata Larvae Survivability in Monitoring Heavy Metal Contaminations

https://doi.org/10.55230/mabjournal.v52i6.2652

Authors

  • Suhaila Ab Hamid School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
  • Ahmad Hadri Jumaat Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Keywords:

Aquatic insects, aquatic water bodies, bioindicator, Cadmium, Manganese, Zinc.

Abstract

The aquatic ecosystem has been suffering a continuous increase of metal contamination such as Cadmium (Cd), Zinc (Zn), and Manganese (Mn) due to their inadequate high potential to disturb the aquatic organism population. Meanwhile, some insects such as Pseudagrion microcephalum and Ischnura senegalensis can be used as biological indicators to determine stream health. Therefore, this study was conducted to determine the relationship between the heavy metal concentration and its effect on the survivability of two different species of damselfly larvae from the family Coenagrionidae; Pseudagrion microcephalum and Ischnura senegalensis. In this study, there is a significant effect of three heavy metal exposures on the survivability of P.microcephalum (F11,180=14.50, P=0.00) and I.senegalensis (F11,180 =15.10, P=0.00). Pseudagrion microcephalum is more tolerable towards Mn (F3,60=13.19, P=0.00) and Zn (F3,60=16.07, P=0.00) at different concentrations compared to I.senegalensis. In the meantime, I.senegalensis was tolerable to Cd exposure. The LC50 value of Cd was much lower than other heavy metals. Besides, the LT50 value of Cd at 200 mg/L was the lowest on P. microcephalum (31 hr) and I. senegalensis (36 hr) compared to other heavy metals. Cd was the most toxic to P.microcephalum and I.senegalensis larvae followed by zinc and manganese (LC50 & LT50=Cd > Zn > Mn). It is concluded that I.senegalensis was tolerant towards Cd, Mn, and Zn compared to P.microcephalum and Cd had the fastest-acting toxicity and significantly reduced the lethal time of mortality on both species.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ali, H., Khan, E. & Ilahi, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019: 6730305. DOI: https://doi.org/10.1155/2019/6730305

Azam, I., Afsheen, S., Zia, A., Javed, M., Saeed, R., Sarwar, M. K. & Munir, B. 2015. Evaluating insects as bioindicators of heavy metal contamination and accumulation near industrial area of Gujrat, Pakistan. BioMed Research International, 2015: 942751. DOI: https://doi.org/10.1155/2015/942751

Ben-Shahar, Y. 2018. The Impact of Environmental Mn Exposure on Insect Biology. Frontier Genetic 9: 70. DOI: https://doi.org/10.3389/fgene.2018.00070

Brinkman, S.F. & Johnston, W.D. 2008. Acute toxicity of aqueous copper, cadmium, and zinc to the Mayfly Rhithrogena hageni. Archives of Environmental Contamination and Toxicology, 54(3): 466- 472. DOI: https://doi.org/10.1007/s00244-007-9043-z

Brix, K.V., De Forest, D.K. & Adams, W.J. 2011. The sensitivity of aquatic insects to divalent metals: A comparative analysis of laboratory and field data. Science Total Environment, 409: 4187-4197. DOI: https://doi.org/10.1016/j.scitotenv.2011.06.061

Buchwalter, D.B., Cain, D.J., Clements, W.H. & Luoma, S.N. 2007. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects. Environment Science and Technology, 41(13): 4821-4828. DOI: https://doi.org/10.1021/es070464y

Cadmus, P., Kotalik, C.J., Jefferson, A.L., Wheeler, S.H., McMahon, A.E. & Clements, W.H. 2020. Size-dependent sensitivity of aquatic insects to metals. Environmental Science and Technology, 54(2): 955-964. DOI: https://doi.org/10.1021/acs.est.9b04089

Carvalho F.G., Silva-Pinto N., Oliveira-Junior J.M.B. & Juen L. 2013. Effects of marginal vegetation removal on Odonata communities. Acta Limnology Brasilisia, 25: 10-18. DOI: https://doi.org/10.1590/S2179-975X2013005000013

César Dos Santos Lima J., Gazonato Neto A.J., de Pádua Andrade D., Freitas, E.C, Moreira, R.A, Miguel, M., Daam, M.A. & Rocha, O. 2019. Acute toxicity of four metals to three tropical aquatic invertebrates: The dragonfly Tramea cophysa and the ostracods Chlamydotheca sp. and Strandesia trispinosa. Ecotoxicology and Environmental Safety, 180: 535-541. DOI: https://doi.org/10.1016/j.ecoenv.2019.05.018

de Barros, C.M., Da Fonte Carvalho-Martins, D., Mello, A.D.A., Salgado, L.T. & Allodi, S. 2017. Nitric-oxide generation induced by metals plays a role in their accumulation by Phallusia nigra hemocytes. Marine Pollution Bulletin, 124: 441-448. DOI: https://doi.org/10.1016/j.marpolbul.2017.06.043

Debecker, S., Dinh, K.V. & Stoks, R. 2017. Strong delayed interactive effects of metal exposure and warming: Latitude-dependent synergisms persist across metamorphosis. Environmental Science and Technology, 51: 2409-2417. DOI: https://doi.org/10.1021/acs.est.6b04989

Department of Environment (DOE) 2005. Interim National Water Quality Standards (INWQS) for Malaysia.

Di Veroli, A., Santoro, F., Pallottini, M., Selvaggi, R., Scardazza, F., Cappelletti, D. & Goretti, E. 2014. Deformities of chironomid larvae and heavy metal pollution: From laboratory to field studies. Chemosphere, 112: 9-17. DOI: https://doi.org/10.1016/j.chemosphere.2014.03.053

Dittman E.K. & Buchwalter, D.B. 2010. Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn (II) thiol scavenging. Environmental Science Technology, 44(23): 9182. DOI: https://doi.org/10.1021/es1022043

Dorji, T. & Nidup, T. 2020. Study of nymphs of Odonata (Ansioptera & Zygoptera) as a bio-indicator for aquatic ecosystem: A case study in Trashigang district. Sherub-Doenme: The Research Journal of Sherbets College, 13: 1-16.

Girgin S., Kazanci N. & Dugel M. 2010. Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques. International Journal Environmental Sciences Technology, 7: 653-664. DOI: https://doi.org/10.1007/BF03326175

Golovanova, I.L. 2008. Effects of heavy metals on the physiological and biochemical status of fishes and aquatic invertebrates. Inland Water Biology, 1(1): 93-101. DOI: https://doi.org/10.1007/s12212-008-1014-1

Harford, A.J., Mooney T.J., Trenfield M.A. & van Dam, R.A. 2015. Manganese (Mn) toxicity to tropical freshwater species in low hardness water. Environmental Toxicology and Chemistry, 34(12): 2856-2863. DOI: https://doi.org/10.1002/etc.3135

Hassall, C. 2015. Odonata as candidate macroecological barometers for global climate change. Freshwater Sciences, 34: 1040-1049. DOI: https://doi.org/10.1086/682210

Ilahi, I., Yousafzai, A.M., Ul-Haq, T., Rahim, A., Attaullah, M. & Naz, D. 2020. Toxicity to Lead, Cadmium and Copper in nymphs of three Odonate species. Bioscience Research, 17(4): 2448-2464.

Khati, W., Ouali, K., Mouneyrac, C. & Ali, B. 2012. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use in biomonitoring. Energy Procedia, 18: 784-794. DOI: https://doi.org/10.1016/j.egypro.2012.05.094

Kim, K.S., Funk, D.H. & Buchwalter, D.B. 2012. Dietary (periphyton) and aqueous Zn bioaccumulation dynamics in the mayfly Centroptilum triangulifer. Ecotoxicology, 21: 2288-2296. DOI: https://doi.org/10.1007/s10646-012-0985-1

Li K., Chen J., Jin P., Li J., Wang J. & Shu Y. 2018. Effects of Cd accumulation on cutworm Spodoptera litura larvae via Cd treated Chinese flowering cabbage Brassica campestris and artificial diets. Chemosphere, 200: 151-163. DOI: https://doi.org/10.1016/j.chemosphere.2018.02.042

Lidman, J., Jonsson, M. & Åsa, M.M.B. 2020. The effect of lead (Pb) and zinc (Zn) contamination on aquatic insect community composition and metamorphosis. Science of The Total Environment, 734: 139406. DOI: https://doi.org/10.1016/j.scitotenv.2020.139406

Luo, M., Cao, H. M., Fan, Y.Y., Zhou, X.C., Chen, J.X., Chung, H. & Wei, H.Y. 2020. Bioaccumulation of Cadmium affects development, mating behavior, and fecundity in the Asian Corn Borer, Ostrinia furnacalis. Insects, 11: 7. DOI: https://doi.org/10.3390/insects11010007

Martinek, P., Kula, E. & Hedbávný, J. 2018. Reactions of Melolontha hippocastani adults to high manganese content in food. Ecotoxicology Environmental Safety, 148: 37-43. DOI: https://doi.org/10.1016/j.ecoenv.2017.10.020

Miguel, T., Oliveira-Junior, J. M., Ligeiro, R. & Juen, L. 2017. Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators, 81: 555-566. DOI: https://doi.org/10.1016/j.ecolind.2017.06.010

Monteiro-Júnior C.S., Couceiro S.R.M., Hamada N. & Juen L. 2013. Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. International Journal Odonatology, 16: 135-44. DOI: https://doi.org/10.1080/13887890.2013.764798

Monteiro-Júnior C.S., Juen L. & Hamada N. 2014. Effects of urbanization on stream habitats and associated adult dragonfly and damselfly communities in central Brazilian Amazonia. Landscape Urban Plan, 127: 28-40. DOI: https://doi.org/10.1016/j.landurbplan.2014.03.006

Okude, G., Futahashi, R., Tanahashi, M. & Fukatsu, T. 2017. Laboratory rearing system for Ischnura senegalensis (Insecta: Odonata) Enables detailed description of larvae development and morphogenesis in dragonfly. Zoological Science, 34: 386-397. DOI: https://doi.org/10.2108/zs170051

Oliveira-Junior, J.M. & Leandro, J. 2019. Structuring of dragonfly communities (Insecta: Odonata) in Eastern Amazon: Effects of environmental and spatial factors in preserved and altered streams. Insects 10: 332. DOI: https://doi.org/10.3390/insects10100322

Oliveira-Junior, J.M., Shimano, Y., Gardner, T., Hughes, R.M., Júnior, P.D. & Juen, L. 2015. Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Australia Ecology, 40: 733-744. DOI: https://doi.org/10.1111/aec.12242

Oweson, C., Sköld, H., Pinsino, A., Matranga, V. & Hernroth, B. 2008. Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquatic Toxicology, 89: 75-81. DOI: https://doi.org/10.1016/j.aquatox.2008.05.016

Poteat, M.D., Díaz-Jaramillo, M. & Buchwalter, D.B. 2012. Divalent metal (Ca,Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna. Journal Experimental Biology, 215: 1575-1583. DOI: https://doi.org/10.1242/jeb.063412

Rivero A., Giron D. & Casas J. 2001. Lifetime allocation of juvenile and adult nutritional resources to egg production in a holometabolous insect. Proceedings of the Royal Society B: Biological Sciences, 268: 1231-1237. DOI: https://doi.org/10.1098/rspb.2001.1645

Schrik, M. 2016. Sublethal Toxicity of Copper on urban dwelling damselflies. All Regis University Theses. 714 pp.

Seidu, I., Danquah, E., Ayine-Nsor, C., Amaning-Kwarteng, D. & Lancaster, L.T. 2017. Odonata community structure patterns of land use in the Atewa Range Forest Reserve, Eastern Region (Ghana). International Journal Odonatology, 20: 173-189. DOI: https://doi.org/10.1080/13887890.2017.1369179

Seidu, I., Nsor, C. A., Danquah, E., Tehoda, P. & Oppong, S.K. 2019. Patterns of Odonata Assemblages in Lotic and Lentic Systems in the Ankasa Conservation Area, Ghana. International Journal of Zoology, 1-14. DOI: https://doi.org/10.1155/2019/3094787

Sfakianakis D.G., Renieri E., Kentouri M. & Tsatsakis A.M. 2015. Effect of heavy metals on fish larvae deformities: A review. Environmental Research, 137: 246-255. DOI: https://doi.org/10.1016/j.envres.2014.12.014

Tandin, D. & Tshering, N. 2020. Study of nymphs of Odonata (Ansioptera & Zygoptera) as a bio-indicator for aquatic ecosystem: A case study in Trashigang District. Sherub Doenme: The Research Journal of Sherubtse College.13: 1-16

Tchounwou, P.B., Yedjou C.G., Patlolla, A.K. & Sutton, D.J. 2012. Heavy metals toxicity and the environment. Experientia Supplementum, 101: 133-164. DOI: https://doi.org/10.1007/978-3-7643-8340-4_6

Tollet, V.D., Benvenutti, E.L., Deer, A. & Rice T.M. 2008. Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). Archives Environmental Contamination Toxicology, 56: 77-84. DOI: https://doi.org/10.1007/s00244-008-9170-1

Villalobos-Jiménez, G., Alison, M.D. & Christopher H. 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: A review. European Journal Entomology, 113: 217-232. DOI: https://doi.org/10.14411/eje.2016.027

Youbi, A., Zerguine, K., Houilia, A., Farfar, K., Soumati, B., Berrebbah, H., Djebar, M.R. & Souiki, L. 2020. Potential use of morphological deformities in Chironomus (Diptera: Chironomidae) as a bioindicator of heavy metals pollution in North-East Algeria. Environmental Science and Pollution Research International, 27(8): 8611-8620. DOI: https://doi.org/10.1007/s11356-019-07459-y

Zhang, L., Liu X., You L., Zhou D., Yu J., Zhao J., Feng J. & Wu, H. 2011. Toxicological effects induced by cadmium in gills of manila clam Ruditapes philippinarum using NMR-based metabolomics. Clean Soil Air Water, 39(11): 989-995. DOI: https://doi.org/10.1002/clen.201100208

Zheng, X., Zang, W.C., Yan, Z.G., Hong, Y.G., Liu, Z.T., Yi, X.L., Wang, X.N., Liu, T.T. & Zhou, L.M. 2015. Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology, 24: 621-1631. DOI: https://doi.org/10.1007/s10646-015-1500-2

Published

30-12-2023

How to Cite

Ab Hamid, S., & Jumaat, A. H. (2023). Toxicity Assessment on Odonata Larvae Survivability in Monitoring Heavy Metal Contaminations. Malaysian Applied Biology, 52(6), 47–56. https://doi.org/10.55230/mabjournal.v52i6.2652

Issue

Section

Research Articles

Funding data