Anti-microbial Mechanism of Lonicera japonica and Andrographis paniculata Extract in Inhibiting Pseudomonas sp.
Keywords:
biofilm, ethanol extract, membrane disruption, phenolic compound, swarmingAbstract
Antibiotic resistance reported in Pseudomonas sp. is associated with various opportunistic infections and is a concern in the public health system. The present study investigated the inhibitory effects of ethanol extracts of Lonicera japonica and Andrographis paniculata on Pseudomonas sp. The total phenolic compound (TPC) calculated in gallic acid equivalent (GAE) was 508.6±117.96 mg GAE/100 g dried weight (DW) in L. japonica while A. paniculata contained 129.0 ± 21.00 mg GAE/100 g DW. Both herbs significantly reduced the swarming zone diameters of Pseudomonas sp., even at a concentration as low as 5 mg/mL when compared to the controls. The anti-swarming effect of L. japonica and A. paniculata may be one of the mutual mechanisms underlying their anti-microbial properties. However, only the extract of L. japonica showed cell anti-adhesion activity, which can prevent biofilm formation. Andrographis paniculata extract on the other hand shows the highest activity in disrupting the cell membrane of Pseudomonas sp.
Downloads
Metrics
References
Abdelhady, M.I.S., Motaal, A.A. & Beerhues, L. 2011. Total phenolic content and antioxidant activity of standardized extracts from leaves and cell cultures of three callistemon species. American Journal of Plant Sciences, 2: 847-850. DOI: https://doi.org/10.4236/ajps.2011.26100
Bandara, M.B.K., Zhu, H., Sankaridurg, P.R. & Willcox, M.D.P. 2006. Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis. Investigative Ophthalmology & Visual Science, 47: 4453-4460. DOI: https://doi.org/10.1167/iovs.06-0288
Banerjee, M., Moulick, S., Bhattacharya, K.K., Parai, D., Chattopadhyay, S. & Mukherjee. S.K. 2017. Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microbial Pathogenesis, 113: 85-93. DOI: https://doi.org/10.1016/j.micpath.2017.10.023
Bouyahya, A., Dakka, N., Et-Touys, A., Abrini, J. & Bakri, Y. 2017. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pacific Journal of Tropical Medicine, 10: 729-743. DOI: https://doi.org/10.1016/j.apjtm.2017.07.021
Chaves, T.P., Clementino, E.L.C., Felismino, D.C., Rômulo, R.N., Vasconcellos, A.A., Coutinho, H.D.M. & Medeiros, A.C.D. 2014. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest. Saudi Journal of Biological Sciences. 22: 404-408. DOI: https://doi.org/10.1016/j.sjbs.2014.12.005
Chen, Q.Z., Lin, R.C., Wang, G.L. & Li, F.M. 2010. Studies on chemical constituents of the extract of Lonicera japonica. Journal of Chinese Medicinal Materials, 33(6): 920-922.
Clementi, E.A., Marks, L.R., Roche-Håkansson, H. & Håkansson, A.P. 2014. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. Journal of Visualized Experiments, 84: 1-8. DOI: https://doi.org/10.3791/51008-v
Fujii, A., Seki, M., Higashiguchi, M., Tachibana, I., Kumanogoh, A. & Tomono, K. 2014. Community-acquired, hospital-acquired, and healthcare-associated pneumonia caused by Pseudomonas aeruginosa. Respiratory Medicine Case Reports, 12: 30–33. DOI: https://doi.org/10.1016/j.rmcr.2014.03.002
Geetha, I. & Catherine, P.A.S. 2017. Antibacterial activity of Andrographis paniculata extracts. The Pharma Innovation Journal, 6: 1-4.
Gukui, C., Jiashen, Z., Yili, Z., Weiping, H., Juan, P., Meng, L., Yani, Z., Tietao, W., Lin, Z., Liang, Z. & Haihua, L. 2021. Structural basis for diguanylate cyclase activation by its binding partner in Pseudomonas aeruginosa. eLife, 10: 1-21.
Jarukamjorn, K. & Nemoto, N. 2008. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. Journal of Health Sciences, 54: 370-381. DOI: https://doi.org/10.1248/jhs.54.370
Jayanthi, B., Emenike, C.U., Agamuthu, P., Simarani, K., Mohamad, S. & Fauziah, S.H. 2016. Selected microbial diversity of contaminated landfill soil of Peninsular Malaysia and the behavior towards heavy metal exposure. Catena, 147: 25-31. DOI: https://doi.org/10.1016/j.catena.2016.06.033
Kaur, C. & Kapoor, H.C. 2002. Anti-oxidant activity and total phenolic content of some Asian vegetables. The International Journal of Food Science & Technology, 37: 153-161. DOI: https://doi.org/10.1046/j.1365-2621.2002.00552.x
Kok-Kee, W., Brid, Q., Ainon, H. & Salmijah, S. 2015. Phenol biodegradation and metal removal by a mixed bacterial consortium. Bioremediation Journal, 19(2): 104-112. DOI: https://doi.org/10.1080/10889868.2014.995368
Kwil, I., Kaźmierczak, D. & Różalski, A. 2013. Swarming growth and resistance of Proteus penneri and Proteus vulgaris strains to normal human serum. Advances in Clinical and Experimental Medicine, 22: 165-75.
Moore, L.S.P., Cunningham, J., & Donaldson, H. 2016. A clinical approach to managing Pseudomonas aeruginosa infection. British Journal of Hospital Medicine, 77(4): 50-54. DOI: https://doi.org/10.12968/hmed.2016.77.4.C50
Myszk, K., Schmid, M., Bialas, W., Olkowicz, M., Leja, K. & Czaczyk, K. 2015. Role of gallic and p -coumaric acids in the AHL-dependent expression of flgA gene and in the process of biofilm formation in food-associated Pseudomonas fluorescens KM120. Journal of the Science of Food and Agriculture, 96: 4037-4047. DOI: https://doi.org/10.1002/jsfa.7599
Praveen, N., Naik, P.M. & Nayeem, A. 2014. Polyphenol composition and antioxidant activity of Andrographis paniculata L. Nees. Mapana Journal of Sciences, 13: 33-46. DOI: https://doi.org/10.12723/mjs.31.4
Rol, C.K., Joon, T.Y., Yoke, C M., Shun, T.J., Abbasiliasi, S., Kee, W.K. & Hock, O.G. 2022. Preliminary assessment of Polytrichum commune extract as an antimicrobial soap ingredient. Journal of Experimental Biology and Agricultural Sciences, 10(4): 894–901. DOI: https://doi.org/10.18006/2022.10(4).894.901
Rufino, R.D., Luna, J.M., Sarubbo, L.A., Rodrigues, L.R.M., Teixeira, J.A.C. & Campos-Takaki, G.M. 2011. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 988. Colloids and Surfaces B: Biointerfaces, 84(1): 1-5, DOI: https://doi.org/10.1016/j.colsurfb.2010.10.045
Shang, X., Pan, H., Li, M., Miao, X. & Ding, H. 2011. Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology, 138: 1–21. DOI: https://doi.org/10.1016/j.jep.2011.08.016
Subramanian, K., Selvakkumar, C., Vinaykumar, K.S., Goswami, N., Meenakshisundaram, S., Balakrishnan, A. & Lakshmi, B.S. 2009. Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpinia officinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation. International Journal of Antimicrobial Agents, 33: 244–250. DOI: https://doi.org/10.1016/j.ijantimicag.2008.08.032
Tong F.S., Jayanthi, B., Chang, S.K. & Wong, K.K. 2022. Characterisation and toxicity evaluation of a biosurfactant produced from Pseudomonas sp. Current topics in toxicology, 18: 141-145.
Truchado, P., Tomás-Barberán, F., Larrosa, M. & Allende, A. 2012. Food phytochemicals act as Quorum Sensing inhibitors reducing production and/or degrading autoinducers of Yersinia enterocolitica and Erwinia carotovora. Food Control, 24: 78-85. DOI: https://doi.org/10.1016/j.foodcont.2011.09.006
Ugurlu, A., Yagci, A.K., Ulusay, S., Aksu, B. & Bosgelmez-Tinaz, G. 2016. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine, 6: 698-701. DOI: https://doi.org/10.1016/j.apjtb.2016.06.008
Vasavi, H.S., Arun, A.B. & Rekhab, P. 2014. Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Medical Microbiology and Immunology, 58(5): 286-293. DOI: https://doi.org/10.1111/1348-0421.12150
Wang, Y., Yu, J., Xiao, Y., Cheng, L. & Guan, X.Z. 2000. Studies on the elimination of resistance plasmid from P. aeruginosa in vitro and vivo with Lonicera japonica. Journal of Norman Bethune University of Medical Science, 26: 139–141.
Zaid, O.I., Abd Majid, R., Sabariah, M.N., Hasidah, M.S., Al-Zihiry, K., Yam, M.F. & Basir, R. 2015. Andrographolide effect on both Plasmodium falciparum infected and non infected RBCs membranes, Asian Pacific Journal of Tropical Medicine, 8(7): 507-512. DOI: https://doi.org/10.1016/j.apjtm.2015.06.007
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
INTI International University and Colleges
Grant numbers INTI-FHLS-02-06-2018/19