Degradation of Polypropylene Using Fungal Enzyme As A Sustainable Approach To Management Plastic Waste
Keywords:
Fungi, Laccase, Manganese peroxidase, Polypropylene, Sustainable land managementAbstract
Polypropylene (PP) is a major environmental problem in Malaysia because it has been ranked the 28th highest plastic polluter in the world (at 56kg per capita per year) in 2021. Landfilling is one of the most common ways of dealing with plastic because leachate may cause increased probability of cancer and neurological impairment in humans. The use of fungi in mycoremediation makes the process eco-friendly. In addition, fungi have a vast hyphal network and broader metabolic competence. The objective of this study was to investigate fungi remediation of PP via the detection of manganese peroxidase and laccase activity in Bushnell Haas Broth (BHB). PP degradation activity was measured via the activity of laccase and manganese peroxidase at a wavelength of 450nm and 610nm, respectively. Of the 17 species of fungi isolated from the Jeram landfill, 12 species of fungi showed growth in BHB with PP as the sole carbon source. Penicillium sp. 1, Aspergillus sp., Penicillium levitum, Talaromyces louisianensis, Aspergillus tamarii, Cunninghamella bertholletiae, Penicillium sp. 2 and Aspergillus niger demonstrated high and longer laccase activity, and these fungi could be considered as potential fungi. P. levitum, P. janthinellum, Penicillium sp, and T. louisianensis have high and longer MnP activity. In summary, P. levitum and T. louisianensis have a high and long duration of MnP and laccase activity in degrading PP, which can be developed and integrated into plastic waste management.
Downloads
Metrics
References
Agbor, R.B., Antai, S.P. & Ekpo, I.A. 2018. Phylogenetic relationship of hydrocarbon degrading fungi species in bioremediation. Global Journal of Earth and Environmental Science, 3(2): 8-15. DOI: https://doi.org/10.31248/GJEES2017.013
Akhtar, N. & Mannan, M.A.U. 2020. Mycoremediation: Expunging environmental pollutants. Biotechnology Reports, 26: e00452. DOI: https://doi.org/10.1016/j.btre.2020.e00452
Alsabri, A., Tahir, F. & Al-Ghamdi, S.G. 2022. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today: Proceedings, 56: 2245-2251. DOI: https://doi.org/10.1016/j.matpr.2021.11.574
Anjana, K., Hinduja, M., Sujitha, K. & Dharani, G. 2020. Review on plastic wastes in marine environment-Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150: 110733. DOI: https://doi.org/10.1016/j.marpolbul.2019.110733
Boyle, D., Catarino, A.I., Clark, N.J. & Henry, T.B. 2020. Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish. Environmental Pollution, 263: 114422. DOI: https://doi.org/10.1016/j.envpol.2020.114422
Braun, M., Mail, M., Heyse, R. & Amelung, W. 2021. Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. The Science of the total environment, 760: 143335. DOI: https://doi.org/10.1016/j.scitotenv.2020.143335
Chen, H.L., Nath, T.K., Chong, S., Foo, V., Gibbins, C. & Lechner, A.M. 2021. The plastic waste problem in Malaysia: management, recycling and disposal of local and global plastic waste. SN Applied Sciences, 3: 437. DOI: https://doi.org/10.1007/s42452-021-04234-y
El Moukhtari, F., Martín-Pozo, L. & Zafra-Gómez, A. 2023. Strategies based on the use of microorganisms for the elimination of pollutants with endocrine-disrupting activity in the environment. Journal of Environmental Chemical Engineering, 11(1): 109268. DOI: https://doi.org/10.1016/j.jece.2023.109268
Fauziah, S.H., Rizman-Idid, M., Cheah, W., Loh, K., Sharma, S., NoorMaiza, M.R.,, Bordt, M., Praphotjanaporn, T., Samah, A. A., Sabaruddin, J.S. & George, M. 2021. Marine debris in Malaysia: A review on the pollution intensity and mitigating measures. Marine Pollution Bulletin, 167: 112258. DOI: https://doi.org/10.1016/j.marpolbul.2021.112258
Favorgen Biotech Corr. (n.d). FavorPrepTM Plant Genomic DNA Extraction Mini Kit. Retrieved from: http://www.favorgen.com/port_pro1.php?type_1=pro_v_p11&id_1=dis15b9a403f5a190 (accessed 05.12.23)
Geyer, R. 2020. Production, use, and fate of synthetic polymers. In: Plastic waste and recycling, Environmental Impact, Societal Issues, Prevention, and Solutions. T.M. Letcher (Ed.). Academic Press. pp. 13-32. DOI: https://doi.org/10.1016/B978-0-12-817880-5.00002-5
Ghatge, S., Yang, Y., Ahn, J.H. & Hur, H.G. 2020. Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63(1): 1-14. DOI: https://doi.org/10.1186/s13765-020-00511-3
Ghosh, S. K. & Pal, S. 2021. De-polymerization of LDPE plastic by Penicillium simplicissimum isolated from municipality garbage plastic and identified by ITSs locus of rDNA. Vegetos, 34(1): 57-67. DOI: https://doi.org/10.1007/s42535-020-00176-9
Healthline. 2020. Is polypropylene a safe plastic to use in your home? URL https://www.healthline.com/health/is-polypropylene-safe (accessed 01.11.23).
Huang, S., Wang, H., Ahmad, W., Ahmad, A., Ivanovich Vatin, N., Mohamed, A.M., Deifalla, A.F. & Mehmood, I. 2022. Plastic waste management strategies and their environmental aspects: A scientometric analysis and comprehensive review. International Journal of Environmental Research and Public Health, 19(8): 4556. DOI: https://doi.org/10.3390/ijerph19084556
Infratec. 2022. Infrared Radiation. URL https://www.infratec.eu/sensor-division/service-support/glossary/infrared-radiation/ (accessed 01.11.23).
Jeon, J.M., Park, S.J., Choi, T.R., Park, J.H., Yang, Y.H. & Yoon, J.J. 2021. Biodegradation of polyethylene and polypropylene by Lysini bacillus species JJY0216 isolated from soil grove. Polymer Degradation and Stability, 191: 109662. DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109662
Jung, M. R., Horgen, F. D., Orski, S.V., Viviana Rodriguez C., Beers, K.L., Balazs, G.H., Jones, T.T., Work, T.M., Brignac, K.C., Royer, S., Hyrenbach, K.D., Jensen, B.A. & Lynch, J.M. 2018. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127: 704-716. DOI: https://doi.org/10.1016/j.marpolbul.2017.12.061
Kapahi, M. & Sachdeva, S. 2017. Mycoremediation potential of Pleurotus species for heavy metals: A review. Bioresources and Bioprocessing, 4(1): 1-9. DOI: https://doi.org/10.1186/s40643-017-0162-8
Khruengsai, S., Sripahco, T. & Pripdeevech, P. 2021. Low-density polyethylene film biodegradation potential by fungal species from Thailand. Journal of Fungi, 7(8): 594. DOI: https://doi.org/10.3390/jof7080594
Klimek-Ochab, M., Brzezińska-Rodak, M., Zymańczyk-Duda, E., Lejczak, B. & Kafarski, P. 2011. Comparative study of fungal cell disruption--scope and limitations of the methods. Folia Microbiologica, 56(5): 469-475. DOI: https://doi.org/10.1007/s12223-011-0069-2
Kumar, A. & Arora, P.K. 2022. Biotechnological applications of manganese peroxidases for sustainable management. Frontiers in Environmental Science, (10): 365. DOI: https://doi.org/10.3389/fenvs.2022.875157
Kumar, A. & Chandra, R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2): e03170. DOI: https://doi.org/10.1016/j.heliyon.2020.e03170
Mayolo-Deloisa, K., González-González, M. & Rito-Palomares, M. 2020. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology, 8: 222. DOI: https://doi.org/10.3389/fbioe.2020.00222
Mohanan, N., Montazer, Z., Sharma, P.K. & Levin, D.B. 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11: 580709. DOI: https://doi.org/10.3389/fmicb.2020.580709
Nikolovska, G. 2022. All about polypropylene: How it's made and used. URL https://www.xometry.com/resources/materials/polypropylene/ (accessed 01.11.23).
Omnexus. 2022. Comprehensive Guide on Polyethylene Terephthalate (PET). URL https://omnexus.specialchem.com/selection-guide/polyethylene-terephthalate-pet-plastic (accessed 16.03.2023).
Ong, G.H., Quah, C.H., Lim, S.S., Wong, K.K. & Cheng, W.H. 2021. Screening for potential fungi from polluted soil for reactive dye remediation. Current Topics in Toxicology, 17: 79-85.
Othman, A.R., Hasan, H.A., Muhamad, M.H., Ismail, N.I. & Abdullah, S.R.S. 2021. Microbial degradation of microplastics by enzymatic processes: A review. Environmental Chemistry Letters, 19: 3057-3073. DOI: https://doi.org/10.1007/s10311-021-01197-9
Pires, J.P., Miranda, G.M., De Souza, G.L., Fraga, F., Da Silva Ramos, A., De Araújo, G.E., Ligabue, R.A., Azevedo, C.M., Lourega, R.V. & De Lima, J.E. 2019. Investigation of degradation of polypropylene in soil using an enzymatic additive. Iranian Polymer Journal, 28: 1045-1055. DOI: https://doi.org/10.1007/s13726-019-00766-8
Ragaert, K., Delva, L. & Van Geem, K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management, 69: 24-58. DOI: https://doi.org/10.1016/j.wasman.2017.07.044
Sang, B.I., Hori, K., Tanji, Y. & Unno, H. 2002. Fungal contribution to in situ biodegradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Applied Microbiology and Biotechnology, 58: 241-247. DOI: https://doi.org/10.1007/s00253-001-0884-5
Silva, M.L.C., Souza, V.B.D., Santos, V.D.S., Kamida, H.M., Vasconcellos-Neto, J.R.T.D., Góes-Neto, A. & Bello Koblitz, M.G. 2014. Production of manganese peroxidase by Trametes villosa on unexpensive substrate and its application in the removal of lignin from agricultural wastes. Advances in Bioscience and Biotechnology, 5(14): 1067-1077. DOI: https://doi.org/10.4236/abb.2014.514122
Solomon, E.I., Sundaram, U.M. & Machonkin, T.E. 1996. Multicopper oxidases and oxygenases. Chemical Reviews, 96(7): 2563-2606. DOI: https://doi.org/10.1021/cr950046o
Sowmya, H.V., Ramalingappa., Krishnappa, M. & Thippeswamy, B. 2015. Degradation of polyethylene by Penicillium simplicissimum isolated from local dumpsite of Shivamogga district. Environment, Development and Sustainability, 17: 731-745. DOI: https://doi.org/10.1007/s10668-014-9571-4
Taghavi, N., Singhal, N., Zhuang, W.Q. & Baroutian, S. 2021. Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere, 263: 127975. DOI: https://doi.org/10.1016/j.chemosphere.2020.127975
Temporiti, M.E.E., Nicola, L., Nielsen, E. & Tosi, S. 2022. Fungal enzymes involved in plastics biodegradation. Microorganisms, 10(6): 1180. DOI: https://doi.org/10.3390/microorganisms10061180
Viel, T., Manfra, L., Zupo, V., Libralato, G., Cocca, M. & Costantini, M. 2023. Biodegradation of plastics induced by marine organisms: Future perspectives for bioremediation approaches. Polymers, 15(12): 2673. DOI: https://doi.org/10.3390/polym15122673
Vukicevich, E., Thomas Lowery, D., Úrbez-Torres, J.R., Bowen, P. & Hart, M. 2018. Groundcover management changes grapevine root fungal communities and plant-soil feedback. Plant and Soil, 424: 419-433. DOI: https://doi.org/10.1007/s11104-017-3532-2
Xu, H., Guo, M.Y., Gao, Y.H., Bai, X.H. & Zhou, X.W. 2017. Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its application in the degradation of four dyes and phenol. BMC Biotechnology, 17: 19. DOI: https://doi.org/10.1186/s12896-017-0338-5
Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A. & Tani, Y. 2001. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polymer Degradation and Stability, 72(2): 323-327. DOI: https://doi.org/10.1016/S0141-3910(01)00027-1
Zeng, G.M., Yu, H.Y., Huang, H.L., Huang, D.L., Chen, Y.N., Huang, G.H. & Li, J.B. 2006. Laccase activities of a soil fungus Penicillium simplicissimum in relation to lignin degradation. World Journal of Microbiology and Biotechnology, 22: 317-324. DOI: https://doi.org/10.1007/s11274-005-9025-0
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
INTI International University and Colleges
Grant numbers INTI-FHLs-04-03-2021