Characterization And Functional Study Of Stress-Associated Protein In Rice And Arabidopsis

https://doi.org/10.55230/mabjournal.v52i3.2705

Authors

  • Sitti' Aisyah Mohd Roszelin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
  • Nur Aminah Mohd Hazbir Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
  • Siti Sarah Jumali Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 77300 Merlimau, Melaka, Malaysia
  • Tasneem Shakri Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
  • Nurulhikma Md Isa Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia

Keywords:

Abiotic stress, arabidopsis, A20/AN1 domains, rice, Stress Associated Protein, zinc finger

Abstract

Environmental stress can hinder the growth and development of crops, thereby reducing productivity. Plants can adapt to changing environments through various morpho-physiological changes, transcriptome regulation, signaling, translational and post-translational modifications. Stress Associated Proteins (SAPs) have been shown to play a crucial role in plant adaptation to biotic and abiotic stressors. They are encoded by a family of genes that produce a zinc finger protein with A20 and/or AN1 domains at either their N or C-terminal ends. Therefore, this study focused on understanding the role of the Oryza sativa SAP gene family (OsSAPs) in response to drought and salinity stress. In-silico analysis revealed that most of the OsSAP family members were upregulated by stress; two highly inducible OsSAP genes were also upregulated in response to stress under a rice-specific background. To study gene function, an Arabidopsis transformation system was employed using three genotypes: Col-0 (wild type), overexpressed transgenic OsSAP8, and atsap2 T-DNA knockout mutant. Arabidopsis AtSAP2 gene, which is homologous to rice OsSAP8, was used as a comparison to the loss of function mutation in Arabidopsis. Morphophysiological analysis showed that the atsap2 mutant displayed a sensitive phenotype to drought and salinity stress through low relative chlorophyll content and delayed inflorescence development and flowering as compared to Col-0 and transgenic OsSAP8. This suggests that the abolished atsap2 gene may contribute to reduced stress tolerance
in plants. In contrast, transgenic OsSAP8 overexpression demonstrated tolerance to drought and salinity stress by maintaining relative chlorophyll content under both stress conditions, indirectly reflecting sustained photosynthetic machinery and stable photosynthetic rate. Further investigation, such as measuring the photosynthesis rate, is required to establish the correlation between chlorophyll data and photosynthesis activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ali, J., Xu, J.L., Gao, Y.M., Ma, X.F., Meng, L.J., Wang, Y., Pang, Y.L., Guan, Y.S., Xu, M.R., Revilleza, J.E., Franje, N.J., Zhou, S.C. & Li, Z.K. 2017. Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS ONE, 12(3): e0172515. DOI: https://doi.org/10.1371/journal.pone.0172515

Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R. & Görlach, J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell, 13(7): 1499-1510. DOI: https://doi.org/10.1105/TPC.010011

Chaudhry, S. & Sidhu, G.P.S. 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports, 41(1): 1-31. DOI: https://doi.org/10.1007/s00299-021-02759-5

dos Santos, T.B., Ribas, A.F., de Souza, S.G.H., Budzinski, I.G.F. & Domingues, D.S. 2022. Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses, 2(1): 113-135. DOI: https://doi.org/10.3390/stresses2010009

El-Shabrawi, H., Kumar, B., Kaul, T., Reddy, M.K., Singla-Pareek, S.L. & Sopory, S.K. 2010. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma, 245(1): 85–96. DOI: https://doi.org/10.1007/s00709-010-0144-6

Gao, W., Long, L., Tian, X., Jin, J., Liu, H., Zhang, H., Xu, F. & Song, C. 2016. Genome-wide identification and expression analysis of stress associated proteins (SAPs) containing A20/AN1 zinc finger in cotton. Molecular Genetics and Genomics, 291(6): 2199-2213. DOI: https://doi.org/10.1007/s00438-016-1252-6

Giri, J., Vij, S., Dansana, P.K. & Tyagi, A.K. 2011. Rice A20/AN1 zinc-finger containing stress-associated. New Phytologist, 191(3): 721-732. DOI: https://doi.org/10.1111/j.1469-8137.2011.03740.x

Goswami, K., Mittal, D., Gautam, B., Sopory, S.K. & Sanan-Mishra, N. 2020. Mapping the salt stressinduced changes in the root miRNome in Pokkali rice. Biomolecules, 10(4): 498. DOI: https://doi.org/10.3390/biom10040498

Hamani, A.K.M., Wang, G., Soothar, M.K., Shen, X., Gao, Y., Qiu, R. & Mehmood, F. 2020. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biology, 20(1): 1-14. DOI: https://doi.org/10.1186/s12870-020-02624-9

He, M., He, C.Q. & Ding, N.Z. 2018. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science, 871: 1-18. DOI: https://doi.org/10.3389/fpls.2018.01771

He, Z., Li, Z., Lu, H., Huo, L., Wang, Z., Wang, Y. & Ji, X. 2019. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants, 8(7): 221. DOI: https://doi.org/10.3390/plants8070221

Hedayati, P., Monfard, H.H., Isa, N.M., Hwang, D.J., Zain, C.R.C.M., Uddin, M.I., Zuraida, A.R., Ismail, I. & Zainal, Z. 2015. Construction and analysis of an Oryza sativa (cv. MR219) salinity-related cDNA library. Acta Physiologiae Plantarum, 37(5): 1837. DOI: https://doi.org/10.1007/s11738-015-1837-4

Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritl, D.J. & Tran, L.S.P. 2016. Drought stress tolerance in Plants. Springer, Switzerland. DOI: https://doi.org/10.1007/978-3-319-32423-4

Iqbal, Z., Iqbal, M.S., Hashem, A., Abd_Allah, E.F. & Ansari, M.I. 2021. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Frontiers in Plant Science, 12: 631810. DOI: https://doi.org/10.3389/fpls.2021.631810

Jia, H., Li, J., Zhang, J., Ren, Y., Hu, J. & Lu, M. 2016. Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genetics and Genomes, 12(4): 78. DOI: https://doi.org/10.1007/s11295-016-1033-8

Jiang, P., Zhang, K., Ding, Z., He, Q., Li, W., Zhu, S., Cheng, W., Zhang, K. & Li, K. 2018. Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnology, 18: 5. DOI: https://doi.org/10.1186/s12896-018-0470-x

Kamarudin, Z.S., Shamsudin, N.A.A., Othman, M.H.C., Shakri, T., Tan, L.W., Sukiran, N.L., Isa, N.M., Rahman, Z.A. & Zainal, Z. 2020. Morpho-physiology and antioxidant enzyme activities of transgenic rice plant overexpressing ABP57 under reproductive stage drought condition. Agronomy, 10(10): 1530. DOI: https://doi.org/10.3390/agronomy10101530

Kanneganti, V. & Gupta, A.K. 2008. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Molecular Biology, 66(5): 445-462. DOI: https://doi.org/10.1007/s11103-007-9284-2

Kaur, P., Bali, S., Sharma, A., Kohli, S.K., Vig, A.P., Bhardwaj, R., Thukral, A.K., Abd-Allah, E.F., Wijaya, L., Alyemeni, M.N. & Ahmad, P. 2019. Cd induced generation of free radical species in Brassica juncea is regulated by supplementation of earthworms in the drilosphere. Science of the Total Environment, 655: 663-675. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.096

Lai, W., Zhou, Y., Pan, R., Liao, L., He, J., Liu, H., Yang, Y. & Liu, S. 2020. Identification and expression analysis of stress-associated proteins (SAPS) containing A20/AN1 zinc finger in cucumber. Plants, 9(3): 400. DOI: https://doi.org/10.3390/plants9030400

Li, F.L., Chen, X., Luo, H.M., Meiners, S.J. & Kong, C.H. 2023. Root-secreted (-)-loliolide modulates both belowground defense and aboveground flowering in Arabidopsis and tobacco (Nicotiana benthamiana). Journal of Experimental Botany, 74(3): 964-975. DOI: https://doi.org/10.1093/jxb/erac439

Li, M., Zhang, H., He, D., Damaris, R.N. & Yang, P. 2022. A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2. Journal of Experimental Botany, 73(8): 2420-2433. DOI: https://doi.org/10.1093/jxb/erac027

Lisar, S., Motafakkerazad, R., Hossain, M.M. & Rahman, I.M.M. 2012. Water Stress. Intech, Europe. Martin, R.C., Glover-Cutter, K., Baldwin, J.C. & Dombrowski, J.E. 2012. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea. BMC Research Notes, 5: 66. DOI: https://doi.org/10.1186/1756-0500-5-66

Misra, S. & Ganesan, M. 2021. The impact of inducible promoters in transgenic plant production and crop improvement. Plant Gene, 27: 100300. DOI: https://doi.org/10.1016/j.plgene.2021.100300

Muthuramalingam, P., Jeyasri, R., Selvaraj, A., Kalaiyarasi, D., Aruni, W., Pandian, S.T.K. & Ramesh, M. 2021. Global transcriptome analysis of novel stress associated protein (SAP) genes expression dynamism of combined abiotic stresses in Oryza sativa (L.). Journal of Biomolecular Structure and Dynamics, 39(6): 2106-2117. DOI: https://doi.org/10.1080/07391102.2020.1747548

Narsai, R., Wang, C., Chen, J., Wu, J., Shou, H. & Whelan, J. 2013. Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics, 14(1): 93. DOI: https://doi.org/10.1186/1471-2164-14-93

Nelson, A.J.M., Jenkins, A., Sharples, G.C. & Journal, S. 1984. Soaking and other seed pretreatment effects on germination and emergence of Sugarbeets at high temperature. Journal of Seed Technology, 9(1): 79-86.

Nutan, K.K., Singla-pareek, S.L. & Pareek, A. 2020. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. Journal of Experimental Botany, 71(2): 684-698. DOI: https://doi.org/10.1093/jxb/erz368

Parihar, P., Singh, S., Singh, R., Singh, V.P. & Prasad, S.M. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6): 4056-4075. DOI: https://doi.org/10.1007/s11356-014-3739-1

Plackett, A.R.G., Powers, S.J., Phillips, A.L., Wilson, Z.A., Hedden, P. & Thomas, S.G. 2018. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning. Plant Reproduction, 31(2): 171-191. DOI: https://doi.org/10.1007/s00497-017-0320-3

Pungging, M., Roslan, N., Suka, I.E. & Isa, N. 2017. Fungsi gen OsSAP8 padi terhadap kepayahan kemasinan. Undergraduate Research Journal for Biomolecular Sciences and Biotechnology, 1: 51-58.

Qin, H., Li, Y. & Huang, R. 2020. Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 9(21): 21. DOI: https://doi.org/10.3390/ijms21218385

Roslan, N.F., Rashid, N.S.A., Suka, I.E., Taufik, N.A.N.A., Abdullah, N.S., Asruri, M.B., Toni, B., Sukiran, N.L., Zainal, Z. & Isa, N.M. 2017. Enhanced tolerance to salinity stress and ABA is regulated by Oryza sativa STRESS ASSOCIATED PROTEIN 8 (OsSAP8). Australian Journal of Crop Science, 11(7): 853-860. DOI: https://doi.org/10.21475/ajcs.17.11.07.pne505

Sampangi-Ramaiah, M.H., Jagadheesh, Dey, P., Jambagi, S., Vasantha Kumari, M.M., Oelmüller, R., Nataraja, K.N., Venkataramana Ravishankar, K., Ravikanth, G. & Uma Shaanker, R. 2020. An endophyte from salt-adapted Pokkali rice confers salt-tolerance to a salt sensitive rice variety and targets a unique pattern of genes in its new host. Scientific Reports, 10: 3237. DOI: https://doi.org/10.1038/s41598-020-59998-x

Sagervanshi, A., Naeem, A., Geilfus, C.M., Kaiser, H. & Mühling, K.H. 2021. One-time abscisic acid priming induces long-term salinity resistance in Vicia faba: Changes in key transcripts, metabolites, and ionic relations. Physiologia Plantarum, 172(1): 146-161. DOI: https://doi.org/10.1111/ppl.13315

Sahid, S., Roy, C., Paul, S. & Datta, R. 2020. Rice lectin protein Osr40c1 imparts drought tolerance by modulating OsSAM2, OsSAP8 and chromatin-associated proteins. Journal of Experimental Botany, 71(22): 7331-7346. DOI: https://doi.org/10.1093/jxb/eraa400

Sen, S., Chakraborty, R. & Kalita, P. 2020. Rice - not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends in Food Science and Technology, 97: 265-285. DOI: https://doi.org/10.1016/j.tifs.2020.01.022

Serrano, R. & Rodriguez-Navarro, A. 2001. Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 13(4): 399-404. DOI: https://doi.org/10.1016/S0955-0674(00)00227-1

Shakri, T., Che-Othman, M.H., Isa, N.M., Sukiran, N.L. & Zainal, Z. 2022. Morpho-physiological and stress-related gene expression of rice varieties in response to salinity stress at early vegetative stage. Agriculture, 12(5): 638. DOI: https://doi.org/10.3390/agriculture12050638

Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G.P., Bali, A.S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S.K., Khan, E.A., Parihar, R.D., Yuan, H., Thukral, A.K., Bhardwaj, R. & Zheng, B. 2020b. Photosynthetic response of plants under different abiotic stresses: A review. Journal of Plant Growth Regulation, 39(2): 509-531. DOI: https://doi.org/10.1007/s00344-019-10018-x

Sharma, A., Soares, C., Sousa, B., Martins, M., Kumar, V., Shahzad, B., Sidhu, G.P.S., Bali, A.S., Asgher, M., Bhardwaj, R., Thukral, A.K., Fidalgo, F. & Zheng, B. 2020a. Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: A review on molecular and biochemical aspects. Physiologia Plantarum, 168(2): 318-344. DOI: https://doi.org/10.1111/ppl.13004

Sherin, G., Aswathi, K.P.R. & Puthur, J.T. 2022. Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress, 4: 100079. DOI: https://doi.org/10.1016/j.stress.2022.100079

Ströher, E., Wang, X.J., Roloff, N., Klein, P., Husemann, A. & Dietz, K.J. 2009. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Molecular Plant, 2(2): 357-367. DOI: https://doi.org/10.1093/mp/ssn084

Sun, M., Yang, Z., Liu, L. & Duan, L. 2022. DNA methylation in plant responses and adaption to abiotic stresses. International Journal of Molecular Sciences, 23(13): 6910. DOI: https://doi.org/10.3390/ijms23136910

Takeno, K. 2016. Stress-induced flowering: The third category of flowering response. Journal of Experimental Botany, 67(17): 4925-4934. DOI: https://doi.org/10.1093/jxb/erw272

Tan, L.W., Tan, C.S., Zuraida, A.R., Hossein, H.M., Goh, H.H., Ismanizan, I. & Zamri, Z. 2018. Overexpression of Auxin Binding Protein 57 from rice (Oryza sativa L.) increased drought and salt tolerance in transgenic Arabidopsis thaliana. IOP Conference Series: Earth and Environmental Science, 197(1): 012038. DOI: https://doi.org/10.1088/1755-1315/197/1/012038

Toulotte, J.M. Pantazopoulou, C.K. Sanclemente, M.A. Voesenek, L.A.C. & Sasidharan, R. 2022. Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology, 64(2):412-430. DOI: https://doi.org/10.1111/jipb.13222

Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R. & Sheffield, J. 2014. Global warming and changes in drought. Nature Climate Change, 4(1): 17-22. DOI: https://doi.org/10.1038/nclimate2067

Ullah, A., Bano, A. & Khan, N. 2021. Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5: 618092. DOI: https://doi.org/10.3389/fsufs.2021.618092

Vij, S. & Tyagi, A.K. 2006. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Molecular Genetics and Genomics, 276(6): 565-575. DOI: https://doi.org/10.1007/s00438-006-0165-1

Vij, S. & Tyagi, A.K. 2008. A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Functional and Integrative Genomics, 8(3): 301-307. DOI: https://doi.org/10.1007/s10142-008-0078-7

Waadt, R., Seller, C.A., Hsu, P.K., Takahashi, Y., Munemasa, S. & Schroeder, J.I. 2022. Plant hormone regulation of abiotic stress responses. Nature Review Molecular Cell Biology, 23: 680-694. DOI: https://doi.org/10.1038/s41580-022-00479-6

Wang, W.X., Vinocur, B., Shoseyov, O. & Altman, A. 2010. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. Acta Horticulturae, 560: 285-292. DOI: https://doi.org/10.17660/ActaHortic.2001.560.54

Wang, Y., Guo, Y., Li, F., Liu, Y. & Jin, S. 2021. Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana. Journal of Plant Research, 134(3): 613-623. DOI: https://doi.org/10.1007/s10265-021-01280-w

Xu, Z., Zhou, G. & Shimizu, H. 2010. Plant responses to drought and rewatering. Plant Signaling and Behavior, 5(6): 649–654. DOI: https://doi.org/10.4161/psb.5.6.11398

Yang, M., Wu, Y., Jin, S., Hou, J., Mao, Y., Liu, W., Shen, Y. & Wu, L. 2015. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: Pathway construction and G-Quadruplex prediction based on transcriptome. PLoS ONE, 10(3): e0118479. DOI: https://doi.org/10.1371/journal.pone.0118479

Yang, R., Hong, Y., Ren, Z., Tang, K., Zhang, H., Zhu, J. & Zhao, C. 2019. A role for PICKLE in the regulation of cold and salt stress tolerance in Arabidopsis. Frontiers in Plant Science, 10: 00900. DOI: https://doi.org/10.3389/fpls.2019.00900

Zambrose, Z.A, Roszelin, S.M.A., Hazbir, N.M.A., Chew, B.L., Jumali, S.S., Yahya, W.A.W & Isa, N.M. 2020. Effect of rice AUXIN BINDING PROTEIN57 (OsABP57) overexpression in response to flooding. Journal of Agricultural Science and Technology, 10(3): 125-133. DOI: https://doi.org/10.17265/2161-6264/2020.03.001

Zhai, Y., Wen, Z., Fang, W., Wang, Y., Xi, C., Liu, J., Zhao, H., Wang, Y. & Han, S. 2021. Functional analysis of rice OSCA genes overexpressed in the arabidopsis osca1 mutant due to drought and salt stresses. Transgenic Research, 30(6): 811-820. DOI: https://doi.org/10.1007/s11248-021-00270-x

Zhang, H., Jing, R., & Mao, X. 2017.Functional characterization of TaSnRK2.8 promoter in response to abiotic stresses by deletion analysis in transgenic Arabidopsis. Frontier Plant Science, 8: 01198. DOI: https://doi.org/10.3389/fpls.2017.01198

Zhang, H., Zhu, J., Gong, Z. & Zhu, J. K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics, 23(2): 104-119. DOI: https://doi.org/10.1038/s41576-021-00413-0

Zhang, K., Cui, H., Cao, S., Yan, L., Li, M. & Sun, Y. 2019b. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. Plant Cell Reports, 38(12): 1501-1514. DOI: https://doi.org/10.1007/s00299-019-02461-7

Zhang, T., Li, Y., Li, C. & Sun, S. 2020. Effect of salinity on oil production: Review on low salinity water flooding mechanisms and exploratory study on pipeline scaling. Oil and Gas Science and Technology, 75(50): 16. DOI: https://doi.org/10.2516/ogst/2020045

Zhang, X.Z., Zheng, W.J., Cao, X.Y., Cui, X.Y., Zhao, S.P., Yu, T.F., Chen, J., Zhou, Y. Bin, Chen, M., Chai, S.C., Xu, Z.S. & Ma, Y.Z. 2019a. Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Frontiers in Plant Science, 10(1453): 01453. DOI: https://doi.org/10.3389/fpls.2019.01453

Zhang, Y., Lan, H., Shao, Q., Wang, R., Chen, H., Tang, H., Zhang, H. & Huang, J. 2016. An A20/AN1- type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 67(1): 315-326. DOI: https://doi.org/10.1093/jxb/erv464

Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C. & Wang, P. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9): 1-16. DOI: https://doi.org/10.3390/ijms22094609

Zhu, J.-K. 2001. Plant salt tolerance. Trends in Plant Science, 6(2): 66-71. DOI: https://doi.org/10.1016/S1360-1385(00)01838-0

Published

30-09-2023

How to Cite

Mohd Roszelin, S. A., Mohd Hazbir, N. A., Jumali, S. S., Shakri, T., & Md Isa, N. . (2023). Characterization And Functional Study Of Stress-Associated Protein In Rice And Arabidopsis. Malaysian Applied Biology, 52(3), 73–86. https://doi.org/10.55230/mabjournal.v52i3.2705

Issue

Section

Research Articles

Funding data