Evaluation of Anchovy by-Products as an Ingredient in the Diets Developed for Red Hybrid Tilapia (Oreochromis spp.) Juveniles
Keywords:
Fish waste, fish nutrition, fish feed, tilapiaAbstract
The main objective of the present study was to investigate the possibility of anchovy by-products meal (ABPM) as a protein source in the diet of red hybrid tilapia (Oreochromis spp.). Five formulated feeds were produced to contain different percentages of ABPM and soybean meal (SBM): Diet contained 100% SBM with addition of 1% methionine; Diet contained 25% SBM and 75% ABP25 (ABP25). Diet 3 contained 50% SBM and 50% ABP (ABP50); Diet 4 contained 25% SBM and 75% ABP (ABP75), and Diet 5 contained 100% ABP (ABP100). A commercial tilapia feed was used as a control diet (CF). Fish were fed close to apparent satiation, twice a day to triplicate groups of the tilapia fingerlings (1.07 ± 0.28 g) for 10 weeks. Specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) improved with the increase of ABP inclusion in the diets. Among the ABP-based diets, the highest growth performance and feed utilization were obtained by fish fed with ABP100 (SGR: 3.1%/day; FCR: 1.9) while the least was ABP0 (SGR: 1.5%/day; FCR: 2.6). Hepatosomatic index (HSI) and viscerasomatic index (VSI) of ABP meal-based diets were slightly higher compared to ABP0 and CF (0.5 to 1.5 and 7 to 12.8 respectively). There was no significant difference in fish survival rate and condition factor among all treatment groups. Protein apparent digestibility coefficient (ADC) showed an increasing pattern with increasing ABP meal in the diet and no significant difference in crude lipid ADC among all treatments. Whole-body moisture and crude lipid were not affected by the inclusion of ABPM in the diet, while crude protein and ash parallelly increased with the the increase in inclusion level of ABPM in the diet. Findings from this study indicated that ABPM is a good protein source and could replace SBM as the dietary protein ingredient for better growth performance and feed utilization.
Downloads
Metrics
References
Abu-Alya, I.S., Alharbi, Y.M., Fathalla, S.I., Zahran, I.S., Shousha, S.M. & Abdel-Rahman, H.A. 2021. Effect of partial soybean replacement by shrimp by-products on the productive and economic performances in African Catfish (Clarias lazera) diets. DOI: https://doi.org/10.3390/fishes6040084
Ahmad, F., Ayub, M.N.A., Mohamad, S.N. & Ibrahim, S. 2018. Proximate and amino acid compositions of selected dried anchovies (whole and processed) from Pangkor Island, Malaysia. Malaysian Fisheries Journal, 17: 39–50.
Ali, M., Santoso, L. & Fransiska, D. 2015. The substitution of fish meal by using ancovies head waste to increase the gowth of tilapia (Oreochromis sp.). Maspari Journal, 7(1): 63–70.
Anizah, M.R., Manaf, S.R. & Hilaliyah, M.J.N. 2021. Utilization of fish waste as fish meal substitute in formulated fish diet on the growth performance of Nile tilapia fish fry (Oreochromis niloticus). Food Research, 5: 21–29. DOI: https://doi.org/10.26656/fr.2017.5(S4).001
Association of Official Analytical Chemists International (AOAC). 1997. Official Methods of Analysis of AOAC International. 16th Ed. AOAC International, Arlington, Virginia.
Association of Official Analytical Chemists International (AOAC). 2003. Official Methods of Analysis of AOAC International. 17th Ed. AOAC International, Gaithersburg.
Carneiro, W.F., Colpini, L.M.S., de Souza, R.C.T., Bombardelli, R.A., Balen, R.E. & Meurer, F. 2020. Effect of the digestible protein-energy relationship on the growth performance of Nile tilapia (Oreochromis niloticus) fed fishmeal-free diets. Animal Feed Science and Technology, 262: 114379. DOI: https://doi.org/10.1016/j.anifeedsci.2019.114379
Coppola, D., Lauritano, C., Esposito, F.P., Riccio, G., Rizzo, C. & de Pascale, D. 2021. Fish waste: From problem to valuable resource. Marine Drugs, 19(2): 116. DOI: https://doi.org/10.3390/md19020116
Dessouki, A.A. 2016. Effects of fish meal replacement with soybean meal and use of exogenous enzymes in diets of Nile tilapia (Oreochromis niloticus) on growth, feed utilization, histopathological changes and blood parameters, Life Science Journal, 11(2): 6-18.
Du, Y., Meng, Q., Zhang, Q. & Guo, F. 2012. Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids, 43(2): 725–734. DOI: https://doi.org/10.1007/s00726-011-1123-8
FAO. 2020. The State of World Fisheries and Aquaculture 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in Action. FAO.
FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.
Fodelianakis, S., Papageorgiou, N., Karakassis, I. & Ladoukakis, E.D. 2015. Community structure changes in sediment bacterial communities along an organic enrichment gradient associated with fish farming. Annals of Microbiology, 65(1): 331–338. DOI: https://doi.org/10.1007/s13213-014-0865-4
Fum, K.Y., Shapawi, R. & Lim, L.S. 2017. Fish by-product meal served as a good protein source in the formulated diets for red tilapia fry. Songklanakarin Journal of Science and Technology, 39(6): 813–817.
Furukawa, A. & Tsukahara, H. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Nippon Suisan Gakkaishi, 32(6): 502–506. DOI: https://doi.org/10.2331/suisan.32.502
Gabriella, C. 2016. Fishery Wastes and By-products: A Resource to Be Valorised. Journal of FisheriesSciences.com, 10(1): 12-15.
Gencbay, G. & Turhan, S. 2016. Proximate composition and nutritional profile of the black sea anchovy (Engraulis encrasicholus) whole fish, fillets, and by-products. Journal of Aquatic Food Product Technology, 25(6): 864–874. DOI: https://doi.org/10.1080/10498850.2014.945199
Goddard, S., Al-Shagaa, G. & Ali, A. 2008. Fisheries by-catch and processing waste meals as ingredients in diets for Nile tilapia, Oreochromis niloticus. Aquaculture Research, 39(5): 518–525. DOI: https://doi.org/10.1111/j.1365-2109.2008.01906.x
Gowsalya, T. & Kumar, J.S.S. 2018. Influence of shrimp head meal incorporated diet on growth and maturation of goldfish Carassius auratus. International Journal of Fisheries and Aquatic Studies, 6(4): 1–7.
Guo, J., Swanepoel, A., Qiu, X., Reis, J., Rhodes, M. & Davis, D.A. 2020. Use of salmon by-product meals as a replacement for anchovy meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 26(2): 490–501. DOI: https://doi.org/10.1111/anu.13011
He, S., Franco, C. & Zhang, W. 2011. Characterisation of processing wastes of Atlantic Salmon (Salmo salar) and Yellowtail Kingfish (Seriola lalandi) harvested in Australia. International Journal of Food Science and Technology, 46(9): 1898–1904. DOI: https://doi.org/10.1111/j.1365-2621.2011.02699.x
Hernández, C., Hardy, R.W., Contreras-Rojas, D., López-Molina, B., González-Rodríguez, B. & Domínguez-Jimenez, P. 2014. Evaluation of tuna by-product meal as a protein source in feeds for juvenile spotted rose snapper Lutjanus guttatus. Aquaculture Nutrition, 20(6): 574–582. DOI: https://doi.org/10.1111/anu.12110
Howlader, S., Sumi, K.R., Sarkar, S., Billah, S.M., Ali, M.L., Howlader, J. & Shahjahan, M. 2023. Effects of dietary replacement of fish meal by soybean meal on growth, feed utilization, and health condition of stinging catfish, Heteropneustes fossilis. Saudi Journal of Biological Sciences, 30(3): 103601. DOI: https://doi.org/10.1016/j.sjbs.2023.103601
Hua, K., Cobcroft, J M., Cole, A., Condon, K., Jerry, D.R., Mangott, A., Praeger, C., Vucko, M.J., Zeng, C., Zenger, K. & Strugnell, J.M. 2019. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth, 1(3): 316–329. DOI: https://doi.org/10.1016/j.oneear.2019.10.018
Jobling, M. 2012. National Research Council (NRC): Nutrient Requirements of Fish and Shrimp. DOI: https://doi.org/10.1007/s10499-011-9480-6
Kari, N.M., Ahmad, F. & Ayub, M.N.A. 2022. Proximate composition, amino acid composition and food product application of anchovy: A review. Food Research, 6(4): 16–29. DOI: https://doi.org/10.26656/fr.2017.6(4).419
Kim, J., Baek, S.I., Cho, S. H. & Kim, T. 2022. Evaluating the efficacy of partially substituting fish meal with unfermented tuna by-product meal in diets on the growth, feed utilization, chemical composition and non-specific immune responses of olive flounder (Paralichthys olivaceus). Aquaculture Reports, 24: 101-150. DOI: https://doi.org/10.1016/j.aqrep.2022.101150
Kim, K.D., Kang Woong, Jang, J.W., Kim, K.D., Kang Woong, Lee, B.J., Hur, S.W. & Han, H. S. 2018. Tuna by-product meal as a dietary protein source replacing fishmeal in juvenile Korean rockfish Sebastes schlegeli. Fisheries and Aquatic Sciences, 21(1): 9. DOI: https://doi.org/10.1186/s41240-018-0107-y
Kim, K., Park, Y., Je, H.W., Seong, M., Damusaru, J.H., Kim, S., Jung, J.Y. & Bai, S.C. 2019. Tuna byproducts as a fish-meal in tilapia aquaculture. Ecotoxicology and Environmental Safety, 172: 364–372. DOI: https://doi.org/10.1016/j.ecoenv.2019.01.107
Lall, S.P. & Kaushik, S.J. 2021. Nutrition and Metabolism of Minerals in Fish. Animals, 11(9): 2711. DOI: https://doi.org/10.3390/ani11092711
Liu, Z., Liu, Q., Zhang, D., Wei, S., Sun, Q., Xia, Q., Shi, W., Ji, H. & Liu, S. 2021. Comparison of the proximate composition and nutritional profile of byproducts and edible parts of five species of shrimp. Foods, 10(11): 2603. DOI: https://doi.org/10.3390/foods10112603
Mahrus, A., Eko, E., & Nuning, M. N. 2018. Products processing of anchovies (Stolephorus sp.) and its waste potential as feed raw material in implementing zero waste concept. Jurnal Perikanan, 8(1): 47–54. DOI: https://doi.org/10.29303/jp.v8i1.78
Meng, F., Li, B., Xie, Y., Li, M. & Wang, R. 2020. Substituting fishmeal with extruded soybean meal in diets did not affect the growth performance, hepatic enzyme activities, but hypoxia tolerance of Dolly Varden (Salvelinus malma) juveniles. Aquaculture Research, 51(1): 379–388. DOI: https://doi.org/10.1111/are.14385
Miao, S., Zhao, C., Zhu, J., Hu, J., Dong, X. & Sun, L. 2018. Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead OPEN. Scientific Reports, 8: 113. DOI: https://doi.org/10.1038/s41598-017-18430-7
Michelato, M., Furuya, W.M., Graciano, T.S., Vidal, L.V.O., Xavier, T.O., de Moura, L.B. & Furuya, V. R.B. 2013. Digestible methionine + cystine requirement for Nile tilapia from 550 to 700 g. Revista Brasileira de Zootecnia, 42(1): 7–12. DOI: https://doi.org/10.1590/S1516-35982013000100002
Mozumder, M.M.H., Uddin, M.M., Schneider, P., Raiyan, M.H.I., Trisha, M.G.A., Tahsin, T.H. & Newase, S. 2022. Sustainable utilization of fishery waste in Bangladesh—A qualitative study for a circular bioeconomy initiative. Fishes, 7(2): 84. DOI: https://doi.org/10.3390/fishes7020084
Obirikorang, K.A., Gyamfi, S., Goode, M.E., Amisah, S., Edziyie, R.E., Quagrainie, K., Egna, H. & Frimpong, E. 2020. Effect of soybean meal diets on the growth performance, ammonia excretion rates, gut histology and feed cost of Nile tilapia (Oreochromis niloticus) fry. Aquaculture Research, 51(9): 3520–3532. DOI: https://doi.org/10.1111/are.14689
Ola, W., Janne K,S., Turid S.F. & Grete Hansen, A. 2017. Nutritional and functional properties of fishmeal produced from fresh by-products of cod (Gadus morhua L.) and saithe (Pollachius virens). Heliyon, 3(7): e00343 . DOI: https://doi.org/10.1016/j.heliyon.2017.e00343
Pateiro, M., Munekata, P.E.S., Domínguez, R., Wang, M., Barba, F.J., Bermúdez, R. & Lorenzo, J.M. 2020. Nutritional profiling and the value of processing by-products from gilthead sea bream (Sparus aurata). Marine Drugs, 18(2): 101. DOI: https://doi.org/10.3390/md18020101
Pervin, M.A., Jahan, H., Akter, R., Omri, A. & Hossain, Z. 2020. Appraisal of different levels of soybean meal in diets on growth, digestive enzyme activity, antioxidation, and gut histology of tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry, 46(4): 1397–1407. DOI: https://doi.org/10.1007/s10695-020-00798-5
Putra, A., Dahlan, I. & Pratama, A. 2018. Substitution of anchovy waste flour for fish meal as conventional feed on quail performance (Coturnixcoturnix japonica). Indonesian Journal of Agriculture, 01(02): 105–111. DOI: https://doi.org/10.32734/injar.v1i2.315
Rahimnejad, S. & Lee, K. J. 2013. Isoleucine effects on non-specific immune response of juvenile olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 34(6): 1731–1732. DOI: https://doi.org/10.1016/j.fsi.2013.03.292
Ranga Niroshan Appuhamy, J.A.D., Knoebel, N.A., Deepthi Nayananjalie, W.A., Escobar, J. & Hanigan, M.D. 2012. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. The Journal of Nutrition, 142(3): 484–491. DOI: https://doi.org/10.3945/jn.111.152595
Sagada, G., Chen, J., Shen, B., Huang, A., Sun, L., Jiang, J. & Jin, C. 2017. Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus). Animal Nutrition, 3(2): 156–163. DOI: https://doi.org/10.1016/j.aninu.2017.03.003
Saïdi, S.A., Azaza, M.S., Abdelmouleh, A., Pelt, J. van, Kraïem, M.M. & El-Feki, A. 2010. The use of tuna industry waste in the practical diets of juvenile Nile tilapia (Oreochromis niloticus, L.): Effect on growth performance, nutrient digestibility and oxidative status. Aquaculture Research, 41(12): 1875–1886. DOI: https://doi.org/10.1111/j.1365-2109.2010.02594.x
Santiago, C.B. & Lovell, R.T. 1988. Amino acid requirements for growth of Nile tilapia. The Journal of Nutrition, 118(12): 1540–1546. DOI: https://doi.org/10.1093/jn/118.12.1540
Sharda, Sharma, O. & Saini, V. 2017. Replacement of fishmeal with soybean meal in Nile tilapia (Oreochromis niloticus ) diet. Journal of Entomology and Zoology Studies, 5(4): 845-849.
Shiau, S.Y. & Liang, H.S. 1995. Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus x O. aureus, are affected by chromic oxide inclusion in the diet. The Journal of Nutrition, 125(4): 976–982.
Simat, V. & Bogdanovic, T. 2012. Seasonal changes in proximate composition of anchovy Engraulis encrasicolus L. from the central Adriatic. ACTSADRIATICA, 53(1): 125–132.
Su, Y.N., Wu, P., Feng, L., Jiang, W.D., Jiang, J., Zhang, Y.A., Figueiredo-Silva, C., Zhou, X.Q. & Liu, Y. 2018. The improved growth performance and enhanced immune function by DL-methionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine of juvenile grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 74: 101–118. DOI: https://doi.org/10.1016/j.fsi.2017.12.051
Tangendjaja, B. 2015. Quality control of feed ingredients for aquaculture. Feed and Feeding Practices in Aquaculture: 141–169. DOI: https://doi.org/10.1016/B978-0-08-100506-4.00006-4
Uyan, O. 2007. Effect of raw anchovy as wet feed on growth performances and production cost of rainbow trout (Oncorhynchus mykiss) during winter season in the Black Sea. Journal of Fisheries Sciences.com, 1(3): 104–110. DOI: https://doi.org/10.3153/jfscom.2007013
Valentine, S. & Kwasek, K. 2022. Feeding rate and protein quality differentially affect growth and feeding efficiency response variables of zebrafish (rerio). Zebrafish, 19(3): 94–103. DOI: https://doi.org/10.1089/zeb.2022.0002
Yaghoubi, M., Mozanzadeh, M.T., Marammazi, J.G., Safari, O. & Gisbert, E. 2016. Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture, 464: 50–59. DOI: https://doi.org/10.1016/j.aquaculture.2016.06.002
Yu, D.H., Gong, S.Y., Yuan, Y.C. & Lin, Y.C. 2013. Effects of replacing fish meal with soybean meal on growth, body composition and digestive enzyme activities of juvenile Chinese sucker, Myxocyprinus asiaticus. Aquaculture Nutrition, 19(1): 84–90. DOI: https://doi.org/10.1111/j.1365-2095.2012.00945.x
Zhang, C., Rahimnejad, S., Wang, Y.-r, Lu, K., Song, K., Wang, L. & Mai, K. 2018. Substituting fish meal with soybean meal in diets for Japanese seabass (Lateolabrax japonicus): Effects on growth, digestive enzymes activity, gut histology, and expression of gut inflammatory and transporter genes. Aquaculture, 483: 173–182. DOI: https://doi.org/10.1016/j.aquaculture.2017.10.029
Zhao, Y., Yan, M.Y., Jiang, Q., Yin, L., Zhou, X. Q., Feng, L., Liu, Y., Jiang, W.D., Wu, P., Zhao, J. & Jiang, J. 2021. Isoleucine improved growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Fish & Shellfish Immunology, 109: 20–33. DOI: https://doi.org/10.1016/j.fsi.2020.09.035
Zhao, Z. Xin, Song, C. you, Xie, J., Ge, X. Ping, Liu, B., Xia, S. Lei, Yang, S., Wang, Q. & Zhu, S. Hua. 2016. Effects of fish meal replacement by soybean peptide on growth performance, digestive enzyme activities, and immune responses of yellow catfish Pelteobagrus fulvidraco. Fisheries Science, 82(4): 665–673. DOI: https://doi.org/10.1007/s12562-016-0996-6
Zulfahmi, I., Audila, A., Sari, A.N., Nur, F.M., Nugroho, R.A. & Hasri, I. 2022. Anchovies (Stolephorus sp.) by-product material as a fish-feed ingredient of Seurukan fish (Osteochilus vittatus): Effect on growth performance and gut morphology. Journal of Aquaculture and Fish Health, 11(2): 255–268. DOI: https://doi.org/10.20473/jafh.v11i2.33189
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Malaysia Sabah
Grant numbers SDK0127-2020