Antimicrobial Activity, In Silico Analysis, and Molecular Docking Studies of An Iodide-Bridged Dimeric Palladium Complex: A Comprehensive Insight

https://doi.org/10.55230/mabjournal.v53i6.1

Authors

  • Nur Anis Nabilah Mohd Fuzi School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Khairil Anuar Jantan School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia https://orcid.org/0000-0001-8649-2146
  • Amirul Ridzuan Abu Bakar Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian, Jejawi 3, Arau, Perlis, Malaysia
  • Nik Muhammad Azhar Nik Daud Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian, Jejawi 3, Arau, Perlis, Malaysia https://orcid.org/0000-0003-1969-6557
  • Mohammad Noor Jalil School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Hamizah Mohd Zaki School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Jamil Mohamed Sapari School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
  • Shamsul Bahrin Gulam Ali Faculty of Health Sciences, Bertam Campus, Universiti Teknologi MARA, 13200 Kepala Batas, Penang Malaysia

Keywords:

Antibacterial activity, in silico study, molecular docking, palladium complex

Abstract

The iodide-bridged dimeric palladium complex [NnBu4]2[Pd2I6] was synthesized and characterized using various physiochemical analyses, including elemental and thermal analysis, UV-Vis, FTIR, and NMR spectroscopy. The antibacterial activity of the compound was evaluated using the disk diffusion method against a panel of bacteria, demonstrating broad-spectrum effectiveness against two Gram-positive bacteria (Bacillus cereus & Bacillus subtilis) and four Gram-negative bacteria (Salmonella typhimurium, Escherichia coli, Klebsiella aerogenes & Klebsiella pneumoniae). Molecular docking studies revealed a calculated binding energy score of -9.90 kcal/mol against the Thymidylate Kinase (TMK) protein, suggesting potential interaction and affinity. Physicochemical parameters, as the Swiss ADME web server predicted, indicated limited permeability across the blood-brain barrier and no gastrointestinal absorption. The Lipinski and Egan models predicted favorable drug-like characteristics for [NnBu4]2[Pd2I6]. [NnBu4]2[Pd2I6] was classified as Toxicity Class 3 for acute oral toxicity, with an LD50 value of 189 mg/kg. Predictive modeling using the ProTox-III web server yielded an average similarity of 88% and prediction accuracy of 71%. In conclusion, the obtained biological data suggest that [NnBu4]2[Pd2I6] could be a promising candidate for future development as an antibacterial agent. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abu Bakar, A. R., Manaharan, T., Merican, A.F. & Mohamad, S.B. 2017. Experimental and computational approaches to reveal the potential of Ficus deltoidea leaves extract as α-amylase inhibitor. Natural Product Research, 32(4): 473–476. DOI: https://doi.org/10.1080/14786419.2017.1312393

Adams, C.P., Walker, K.A., Obare, S.O. & Docherty, K.M. 2014. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE, 9(1): e85981. DOI: https://doi.org/10.1371/journal.pone.0085981

Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., Ugwuja, E.I. & Aja, P.M. 2023. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13(1): 13398. DOI: https://doi.org/10.1038/s41598-023-40160-2

Aljohani, F.S., Abu-Dief, A.M., El-Khatib, R.M., Al-Abdulkarim, H.A., Alharbi, A., Mahran, A. & El-Metwaly, N.M. 2021. Structural inspection for novel Pd (II), VO (II), Zn (II) and Cr (III)-azomethine metal chelates: DNA interaction, biological screening and theoretical treatments. Journal of Molecular Structure, 1246: 131139. DOI: https://doi.org/10.1016/j.molstruc.2021.131139

Balaram, V. 2019. A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285-1303. DOI: https://doi.org/10.1016/j.gsf.2018.12.005

Barbosa, H.F.G., Attjioui, M., Ferreira, A.P.G., Dockal, E.R., El Gueddari, N.E., Moerschbacher, B.M., & Cavalheiro, É.T.G. 2017. Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicylaldehydes and their Pd (II) and Pt (II) complexes. Molecules, 22(11): 1987. DOI: https://doi.org/10.3390/molecules22111987

Biyala, M.K., Fahmi, N. & Singh, R.V. 2004. Preparation, characterization and antimicrobial properties of some palladium and platinum complexes with active Schiff base ligands. Indian Journal of Chemistry, 43(12): 2536-2541.

Benet, L.Z., Hosey, C.M., Ursu, O. & Oprea, T.I. 2016. BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101: 89–98. DOI: https://doi.org/10.1016/j.addr.2016.05.007

Cowley, A., Jiang, J., Tang, B. & Wang, A. 2022. PGM Market Report. Jonhson Matthey.

Cuscusa, M., Rigoldi, A., Artizzu, F., Cammi, R., Fornasiero, P., Deplano, P. & Serpe, A. 2017. Ionic couple-driven palladium leaching by organic triiodide solutions. ACS Sustainable Chemistry & Engineering, 5(5): 4359-4370. DOI: https://doi.org/10.1021/acssuschemeng.7b00410

Daina, A., Michielin, O. & Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1): 42717. DOI: https://doi.org/10.1038/srep42717

Datta, B., Roy, A. & Roy, M. N. 2017. Inclusion complexation of tetrabutylammonium iodide by cyclodextrins. Journal of Chemical Sciences, 129(5): 579-587. DOI: https://doi.org/10.1007/s12039-017-1267-5

Dechouk, L.F., Bouchoucha, A., Abdi, Y., Larbi, K.S., Bouzaheur, A. &Terrachet-Bouaziz, S. 2022. Coordination of new palladium (II) complexes with derived furopyran-3, 4‑dione ligands: Synthesis, characterization, redox behaviour, DFT, antimicrobial activity, molecular docking and ADMET studies. Journal of Molecular Structure, 1257: 132611. DOI: https://doi.org/10.1016/j.molstruc.2022.132611

Dhingra, S., Rahman, N.A.A., Peile, E., Rahman, M., Sartelli, M., Hassali, M.A., Islam, T., Islam, S. & Haque, M. 2020. Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Frontiers in Public Health, 8: 535668. DOI: https://doi.org/10.3389/fpubh.2020.535668

Drwal, M.N., Banerjee, P., Dunkel, M., Wettig, M.R. & Preissner, R. 2014. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42(W1): W53-W58. DOI: https://doi.org/10.1093/nar/gku401

Egan, W. J., Merz, K. M. & Baldwin, J.J. 2000. Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21): 3867-3877. DOI: https://doi.org/10.1021/jm000292e

Frei, A., Zuegg, J., Elliott, A.G., Baker, M., Braese, S., Brown, C., Chen, F., Dowson, C.G., Dujardin, G., Jung, N. & King, A.P. 2020. Metal complexes as a promising source for new antibiotics. Chemical Science, 11(10): 2627-2639. DOI: https://doi.org/10.1039/C9SC06460E

Frei, A., Verderosa, A.D., Elliott, A.G., Zuegg, J. & Blaskovich, M.A. 2023. Metals to combat antimicrobial resistance. Nature Reviews Chemistry, 7(3): 202-224. DOI: https://doi.org/10.1038/s41570-023-00463-4

Fuzi, N.A.N.M., Rahmat, S.K., Aziz, M.H.A., Jalil, M.N., Ali, S.B.G. & Jantan, K.A. 2023. Recovered palladium complexes as a potential homogeneous catalyst for CH functionalization and antibacterial agent. Malaysian Journal of Analytical Sciences, 27(2): 407-421.

Ghose, A.K., Viswanadhan, V.N. & Wendoloski, J.J. 1999. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1): 55-68. DOI: https://doi.org/10.1021/cc9800071

Gombac, V., Montini, T., Falqui, A., Loche, D., Prato, M., Genovese, A., Mercuri, M.L., Serpe, A., Fornasiero, P. & Deplano, P. 2016. From: Trash to resource: Recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H2 production. Green Chemistry, 18(9): 2745–2752. DOI: https://doi.org/10.1039/C5GC02908B

Gonzalez-Prada, I., Borges, A., Santos-Torres, B., Magariños, B., Simões, M., Concheiro, A. & Alvarez-Lorenzo, C. 2024. Antimicrobial cyclodextrin-assisted electrospun fibers loaded with carvacrol, citronellol and cinnamic acid for wound healing. International Journal of Biological Macromolecules, 277: 134154. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134154

Hadhoum, N., Hadjadj-Aoul, F. Z., Hocine, S., Bouaziz-Terrachet, S., Abdoun, A., Seklaoui, N., Boubrit, F., Abderrahim, W. & Mekacher, L.R. 2021. Design and one-pot synthesis of some new [3, 5-di (4', 5'-diphenyl-2'-substituted)-1h-imidazol-1-yl)]-1h-1, 2, 4-triazole derivatives: In silico admet and docking study, antibacterial and antifungal activities evaluation. Heterocycles, 102(10): 1949-1968. DOI: https://doi.org/10.3987/COM-21-14503

Hashemian, S., Sadeghi, B., Mozafari, F., Salehifar, H. & Salari, K. 2013. Adsorption of disperse of yellow 42 onto bentonite and organo-modified bentonite by tetra butyl ammonium iodide (B-TBAI). Polish Journal of Environmental Studies, 22(5): 1363-1370.

Jantan, K.A., Kwok, C.Y., Chan, K.W., Marchiò, L., White, A.J.P., Deplano, P., Serpe, A. & Wilton-Ely, J.D.E.T. 2017. From recovered metal waste to high-performance palladium catalysts. Green Chemistry, 19(24): 5846-5853. DOI: https://doi.org/10.1039/C7GC02678A

Jantan, K.A., Ekart, G., McCarthy, S., White, A.J.P., Braddock, D.C., Serpe, A. & Wilton-Ely, J.D.E.T. 2024. Palladium complexes derived from waste as catalysts for C-H functionalisation and C-N bond formation. Catalysts, 14(5): 295. DOI: https://doi.org/10.3390/catal14050295

Jayanthi, K. & Azam, M.A. 2023. Thymidylate kinase inhibitors as antibacterial agents: A review. Applied Biochemistry and Microbiology, 593: 250-266. DOI: https://doi.org/10.1134/S0003683823030092

Kawatkar, S.P., Keating, T.A., Olivier, N.B., Breen, J.N., Green, O.M., Guler, S.Y., Hentemann, M.F., Loch, J.T., McKenzie, A.R., Newman, J.V. & Otterson, L.G. 2014. Antibacterial inhibitors of gram-positive thymidylate kinase: Structure–activity relationships and chiral preference of a new hydrophobic binding region. Journal of Medicinal Chemistry, 57(11): 4584-4597. DOI: https://doi.org/10.1021/jm500463c

Khan, H., Sirajuddin, M., Badshah, A., Ahmad, S., Bilal, M., Salman, S. M., Butler, I.S., Wani, T.A. & Zargar, S. 2023. Synthesis, physicochemical characterization, biological evaluation, in silico and molecular docking studies of Pd (II) complexes with P, S-donor ligands. Pharmaceuticals, 16(6): 806. DOI: https://doi.org/10.3390/ph16060806

Lacerda, M.L.D., Rossi, D.A., Lourenzatto, E.C.A., Takeuchi, M.G., Souza, W.A., Silva, R.T.C., Julio, L.G., Guerra, W., & Melo, R.T.D. 2022. Antimicrobial resistance challenged with Platinum (II) and Palladium (II) complexes containing 1, 10-phenanthroline and 5-Amino-1, 3, 4-Thiadiazole-2 (3H)-Thione in Campylobacter jejuni. Antibiotics, 11(11): 1645. DOI: https://doi.org/10.3390/antibiotics11111645

Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3): 3-25. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

Majid, M.F., Zaid, H.F.M., Kait, C.F., Abd Ghani, N. & Jumbri, K. 2019. Mixtures of tetrabutylammonium chloride salt with different glycol structures: Thermal stability and functional groups characterizations. Journal of Molecular Liquids, 294: 111588. DOI: https://doi.org/10.1016/j.molliq.2019.111588

Moulijn, J.A., Van Diepen, A.E. & Kapteijn, F. 2001. Catalyst deactivation: Is it predictable?: What to do?. Applied Catalysis A: General, 212(1-2): 3-16. DOI: https://doi.org/10.1016/S0926-860X(00)00842-5

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16): 2785–2791. DOI: https://doi.org/10.1002/jcc.21256

Muegge, I. 2002. Pharmacophore features of potential drugs. Chemistry–A European Journal, 8(9): 1976-1981. DOI: https://doi.org/10.1002/1521-3765(20020503)8:9<1976::AID-CHEM1976>3.0.CO;2-K

Oliveira, W.X., da Costa, M.M., Fontes, A.P., Pinheiro, C.B., de Paula, F.C., Jaimes, E.H., Pedroso, E.F., de Souza, P.P., Pereira-Maia, E.C. & Pereira, C.L. 2014. Palladium (II) and platinum (II) oxamate complexes as potential anticancer agents: Structural characterization and cytotoxic activity. Polyhedron, 76: 16-21. DOI: https://doi.org/10.1016/j.poly.2014.03.049

Rutherford, N.M., Olmstead, M.M. & Balch, A.L. 1984. Bridged or nonbridged structures for dinuclear metal complexes. The case of tetrakis (methyl isocyanide) dipalladium (I) iodide: An unbridged compound. Inorganic Chemistry, 23: 2833-2837. DOI: https://doi.org/10.1021/ic00186a024

Robinson, B.H. 2009. E-waste: An assessment of global production and environmental impacts. Science of The Total Environment, 408(2): 183-191. DOI: https://doi.org/10.1016/j.scitotenv.2009.09.044

Serpe, A., Bigoli, F., Cabras, M.C., Fornasiero, P., Graziani, M., Mercuri, M.L., Montini, T., Pilia, L., Trogua E.F. & Deplano, P. 2005. Pd-Dissolution through a mild and effective one-step reaction and its application for Pd-recovery from spent catalytic converters. Chemical Communication, 8:1040-1042. DOI: https://doi.org/10.1039/b415799k

Soldevila-Barreda, J.J. & Metzler-Nolte, N. 2019. Intracellular catalysis with selected metal complexes and metallic nanoparticles: advances toward the development of catalytic metallodrugs. Chemical Reviews, 119(2): 829-869. DOI: https://doi.org/10.1021/acs.chemrev.8b00493

Tonde, S.S., Kelkar, A.A., Bhadbhade, M.M. & Chaudhari, R.V. 2005. Isolation and characterization of an iodide bridged dimeric palladium complex in carbonylation of methanol. Journal of Organometallic Chemistry, 690: 1677-1681. DOI: https://doi.org/10.1016/j.jorganchem.2005.01.010

Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W. & Kopple, K.D. 2002. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12): 2615-2623. DOI: https://doi.org/10.1021/jm020017n

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G. & Tang, Y. 2019. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6): 1067-1069. DOI: https://doi.org/10.1093/bioinformatics/bty707

Zalevskaya, O., Gur'eva, Y., Kutchin, A. & Hansford, K.A. 2020. Antimicrobial and antifungal activities of terpene-derived palladium complexes. Antibiotics, 9(5): 277. DOI: https://doi.org/10.3390/antibiotics9050277

Zianna, A., Geromichalos, G.D., Pekou, A., Hatzidimitriou, A.G., Coutouli-Argyropoulou, E., Lalia-Kantouri, M., Pantazaki, A.A. & Psomas, G. 2019. A palladium (II) complex with the Schiff base 4-chloro-2-(N-ethyliminomethyl)-phenol: Synthesis, structural characterization, and in vitro and in silico biological activity studies. Journal of Inorganic Biochemistry, 199: 110792. DOI: https://doi.org/10.1016/j.jinorgbio.2019.110792

Published

25-12-2024

How to Cite

Mohd Fuzi, N. A. N., Jantan, K. A., Abu Bakar, A. R., Nik Daud, N. M. A. ., Jalil, M. N. ., Mohd Zaki, H. ., Mohamed Sapari, J. ., & Gulam Ali, S. B. . (2024). Antimicrobial Activity, In Silico Analysis, and Molecular Docking Studies of An Iodide-Bridged Dimeric Palladium Complex: A Comprehensive Insight. Malaysian Applied Biology, 53(6), 143–155. https://doi.org/10.55230/mabjournal.v53i6.1

Issue

Section

Research Articles

Funding data

Most read articles by the same author(s)