Antimicrobial Activity, In Silico Analysis, and Molecular Docking Studies of An Iodide-Bridged Dimeric Palladium Complex: A Comprehensive Insight
Keywords:
Antibacterial activity, in silico study, molecular docking, palladium complexAbstract
The iodide-bridged dimeric palladium complex [NnBu4]2[Pd2I6] was synthesized and characterized using various physiochemical analyses, including elemental and thermal analysis, UV-Vis, FTIR, and NMR spectroscopy. The antibacterial activity of the compound was evaluated using the disk diffusion method against a panel of bacteria, demonstrating broad-spectrum effectiveness against two Gram-positive bacteria (Bacillus cereus & Bacillus subtilis) and four Gram-negative bacteria (Salmonella typhimurium, Escherichia coli, Klebsiella aerogenes & Klebsiella pneumoniae). Molecular docking studies revealed a calculated binding energy score of -9.90 kcal/mol against the Thymidylate Kinase (TMK) protein, suggesting potential interaction and affinity. Physicochemical parameters, as the Swiss ADME web server predicted, indicated limited permeability across the blood-brain barrier and no gastrointestinal absorption. The Lipinski and Egan models predicted favorable drug-like characteristics for [NnBu4]2[Pd2I6]. [NnBu4]2[Pd2I6] was classified as Toxicity Class 3 for acute oral toxicity, with an LD50 value of 189 mg/kg. Predictive modeling using the ProTox-III web server yielded an average similarity of 88% and prediction accuracy of 71%. In conclusion, the obtained biological data suggest that [NnBu4]2[Pd2I6] could be a promising candidate for future development as an antibacterial agent.
Downloads
Metrics
References
Abu Bakar, A. R., Manaharan, T., Merican, A.F. & Mohamad, S.B. 2017. Experimental and computational approaches to reveal the potential of Ficus deltoidea leaves extract as α-amylase inhibitor. Natural Product Research, 32(4): 473–476.
Adams, C.P., Walker, K.A., Obare, S.O. & Docherty, K.M. 2014. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS ONE, 9(1): e85981.
Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., Ugwuja, E.I. & Aja, P.M. 2023. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports, 13(1): 13398.
Aljohani, F.S., Abu-Dief, A.M., El-Khatib, R.M., Al-Abdulkarim, H.A., Alharbi, A., Mahran, A. & El-Metwaly, N.M. 2021. Structural inspection for novel Pd (II), VO (II), Zn (II) and Cr (III)-azomethine metal chelates: DNA interaction, biological screening and theoretical treatments. Journal of Molecular Structure, 1246: 131139.
Balaram, V. 2019. A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4): 1285-1303.
Barbosa, H.F.G., Attjioui, M., Ferreira, A.P.G., Dockal, E.R., El Gueddari, N.E., Moerschbacher, B.M., & Cavalheiro, É.T.G. 2017. Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicylaldehydes and their Pd (II) and Pt (II) complexes. Molecules, 22(11): 1987.
Biyala, M.K., Fahmi, N. & Singh, R.V. 2004. Preparation, characterization and antimicrobial properties of some palladium and platinum complexes with active Schiff base ligands. Indian Journal of Chemistry, 43(12): 2536-2541.
Benet, L.Z., Hosey, C.M., Ursu, O. & Oprea, T.I. 2016. BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101: 89–98.
Cowley, A., Jiang, J., Tang, B. & Wang, A. 2022. PGM Market Report. Jonhson Matthey.
Cuscusa, M., Rigoldi, A., Artizzu, F., Cammi, R., Fornasiero, P., Deplano, P. & Serpe, A. 2017. Ionic couple-driven palladium leaching by organic triiodide solutions. ACS Sustainable Chemistry & Engineering, 5(5): 4359-4370.
Daina, A., Michielin, O. & Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1): 42717.
Datta, B., Roy, A. & Roy, M. N. 2017. Inclusion complexation of tetrabutylammonium iodide by cyclodextrins. Journal of Chemical Sciences, 129(5): 579-587.
Dechouk, L.F., Bouchoucha, A., Abdi, Y., Larbi, K.S., Bouzaheur, A. &Terrachet-Bouaziz, S. 2022. Coordination of new palladium (II) complexes with derived furopyran-3, 4‑dione ligands: Synthesis, characterization, redox behaviour, DFT, antimicrobial activity, molecular docking and ADMET studies. Journal of Molecular Structure, 1257: 132611.
Dhingra, S., Rahman, N.A.A., Peile, E., Rahman, M., Sartelli, M., Hassali, M.A., Islam, T., Islam, S. & Haque, M. 2020. Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Frontiers in Public Health, 8: 535668.
Drwal, M.N., Banerjee, P., Dunkel, M., Wettig, M.R. & Preissner, R. 2014. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42(W1): W53-W58.
Egan, W. J., Merz, K. M. & Baldwin, J.J. 2000. Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21): 3867-3877.
Frei, A., Zuegg, J., Elliott, A.G., Baker, M., Braese, S., Brown, C., Chen, F., Dowson, C.G., Dujardin, G., Jung, N. & King, A.P. 2020. Metal complexes as a promising source for new antibiotics. Chemical Science, 11(10): 2627-2639.
Frei, A., Verderosa, A.D., Elliott, A.G., Zuegg, J. & Blaskovich, M.A. 2023. Metals to combat antimicrobial resistance. Nature Reviews Chemistry, 7(3): 202-224.
Fuzi, N.A.N.M., Rahmat, S.K., Aziz, M.H.A., Jalil, M.N., Ali, S.B.G. & Jantan, K.A. 2023. Recovered palladium complexes as a potential homogeneous catalyst for CH functionalization and antibacterial agent. Malaysian Journal of Analytical Sciences, 27(2): 407-421.
Ghose, A.K., Viswanadhan, V.N. & Wendoloski, J.J. 1999. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1): 55-68.
Gombac, V., Montini, T., Falqui, A., Loche, D., Prato, M., Genovese, A., Mercuri, M.L., Serpe, A., Fornasiero, P. & Deplano, P. 2016. From: Trash to resource: Recovered-Pd from spent three-way catalysts as a precursor of an effective photo-catalyst for H2 production. Green Chemistry, 18(9): 2745–2752.
Gonzalez-Prada, I., Borges, A., Santos-Torres, B., Magariños, B., Simões, M., Concheiro, A. & Alvarez-Lorenzo, C. 2024. Antimicrobial cyclodextrin-assisted electrospun fibers loaded with carvacrol, citronellol and cinnamic acid for wound healing. International Journal of Biological Macromolecules, 277: 134154.
Hadhoum, N., Hadjadj-Aoul, F. Z., Hocine, S., Bouaziz-Terrachet, S., Abdoun, A., Seklaoui, N., Boubrit, F., Abderrahim, W. & Mekacher, L.R. 2021. Design and one-pot synthesis of some new [3, 5-di (4', 5'-diphenyl-2'-substituted)-1h-imidazol-1-yl)]-1h-1, 2, 4-triazole derivatives: In silico admet and docking study, antibacterial and antifungal activities evaluation. Heterocycles, 102(10): 1949-1968.
Hashemian, S., Sadeghi, B., Mozafari, F., Salehifar, H. & Salari, K. 2013. Adsorption of disperse of yellow 42 onto bentonite and organo-modified bentonite by tetra butyl ammonium iodide (B-TBAI). Polish Journal of Environmental Studies, 22(5): 1363-1370.
Jantan, K.A., Kwok, C.Y., Chan, K.W., Marchiò, L., White, A.J.P., Deplano, P., Serpe, A. & Wilton-Ely, J.D.E.T. 2017. From recovered metal waste to high-performance palladium catalysts. Green Chemistry, 19(24): 5846-5853.
Jantan, K.A., Ekart, G., McCarthy, S., White, A.J.P., Braddock, D.C., Serpe, A. & Wilton-Ely, J.D.E.T. 2024. Palladium complexes derived from waste as catalysts for C-H functionalisation and C-N bond formation. Catalysts, 14(5): 295.
Jayanthi, K. & Azam, M.A. 2023. Thymidylate kinase inhibitors as antibacterial agents: A review. Applied Biochemistry and Microbiology, 593: 250-266.
Kawatkar, S.P., Keating, T.A., Olivier, N.B., Breen, J.N., Green, O.M., Guler, S.Y., Hentemann, M.F., Loch, J.T., McKenzie, A.R., Newman, J.V. & Otterson, L.G. 2014. Antibacterial inhibitors of gram-positive thymidylate kinase: Structure–activity relationships and chiral preference of a new hydrophobic binding region. Journal of Medicinal Chemistry, 57(11): 4584-4597.
Khan, H., Sirajuddin, M., Badshah, A., Ahmad, S., Bilal, M., Salman, S. M., Butler, I.S., Wani, T.A. & Zargar, S. 2023. Synthesis, physicochemical characterization, biological evaluation, in silico and molecular docking studies of Pd (II) complexes with P, S-donor ligands. Pharmaceuticals, 16(6): 806.
Lacerda, M.L.D., Rossi, D.A., Lourenzatto, E.C.A., Takeuchi, M.G., Souza, W.A., Silva, R.T.C., Julio, L.G., Guerra, W., & Melo, R.T.D. 2022. Antimicrobial resistance challenged with Platinum (II) and Palladium (II) complexes containing 1, 10-phenanthroline and 5-Amino-1, 3, 4-Thiadiazole-2 (3H)-Thione in Campylobacter jejuni. Antibiotics, 11(11): 1645.
Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3): 3-25.
Majid, M.F., Zaid, H.F.M., Kait, C.F., Abd Ghani, N. & Jumbri, K. 2019. Mixtures of tetrabutylammonium chloride salt with different glycol structures: Thermal stability and functional groups characterizations. Journal of Molecular Liquids, 294: 111588.
Moulijn, J.A., Van Diepen, A.E. & Kapteijn, F. 2001. Catalyst deactivation: Is it predictable?: What to do?. Applied Catalysis A: General, 212(1-2): 3-16.
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16): 2785–2791.
Muegge, I. 2002. Pharmacophore features of potential drugs. Chemistry–A European Journal, 8(9): 1976-1981.
Oliveira, W.X., da Costa, M.M., Fontes, A.P., Pinheiro, C.B., de Paula, F.C., Jaimes, E.H., Pedroso, E.F., de Souza, P.P., Pereira-Maia, E.C. & Pereira, C.L. 2014. Palladium (II) and platinum (II) oxamate complexes as potential anticancer agents: Structural characterization and cytotoxic activity. Polyhedron, 76: 16-21.
Rutherford, N.M., Olmstead, M.M. & Balch, A.L. 1984. Bridged or nonbridged structures for dinuclear metal complexes. The case of tetrakis (methyl isocyanide) dipalladium (I) iodide: An unbridged compound. Inorganic Chemistry, 23: 2833-2837.
Robinson, B.H. 2009. E-waste: An assessment of global production and environmental impacts. Science of The Total Environment, 408(2): 183-191.
Serpe, A., Bigoli, F., Cabras, M.C., Fornasiero, P., Graziani, M., Mercuri, M.L., Montini, T., Pilia, L., Trogua E.F. & Deplano, P. 2005. Pd-Dissolution through a mild and effective one-step reaction and its application for Pd-recovery from spent catalytic converters. Chemical Communication, 8:1040-1042.
Soldevila-Barreda, J.J. & Metzler-Nolte, N. 2019. Intracellular catalysis with selected metal complexes and metallic nanoparticles: advances toward the development of catalytic metallodrugs. Chemical Reviews, 119(2): 829-869.
Tonde, S.S., Kelkar, A.A., Bhadbhade, M.M. & Chaudhari, R.V. 2005. Isolation and characterization of an iodide bridged dimeric palladium complex in carbonylation of methanol. Journal of Organometallic Chemistry, 690: 1677-1681.
Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W. & Kopple, K.D. 2002. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12): 2615-2623.
Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G. & Tang, Y. 2019. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6): 1067-1069.
Zalevskaya, O., Gur'eva, Y., Kutchin, A. & Hansford, K.A. 2020. Antimicrobial and antifungal activities of terpene-derived palladium complexes. Antibiotics, 9(5): 277.
Zianna, A., Geromichalos, G.D., Pekou, A., Hatzidimitriou, A.G., Coutouli-Argyropoulou, E., Lalia-Kantouri, M., Pantazaki, A.A. & Psomas, G. 2019. A palladium (II) complex with the Schiff base 4-chloro-2-(N-ethyliminomethyl)-phenol: Synthesis, structural characterization, and in vitro and in silico biological activity studies. Journal of Inorganic Biochemistry, 199: 110792.
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers KPT(BS)820710105709 -
Ministry of Higher Education, Malaysia
Grant numbers RACER/1/2019/STG07/UITM//6