Ultrasonic-Assisted Extraction of Phenolic Compound From Harumanis Mango Leaves (Mangifera indica) Using Green Natural Deep Eutectic Solvents (NADESs)
Keywords:
Green Technology, Harumanis, Mangifera indica, Natural Deep Eutectic Solvents (NADESs), Phenolic Compounds, PhytochemicalsAbstract
Harumanis mangoes, known for their taste and nutrition, are a symbol of Perlis, Malaysia. Natural Deep Eutectic Solvents (NADESs) are being studied for eco-friendly extraction methods. There is limited information on green extraction from Harumanis mango leaves, and NADESs have not been used for this purpose. This study aims to evaluate the green extraction of phenolic compounds from Harumanis mango leaves using five NADESs systems, assess the phytochemical composition, and test their antimicrobial potential. These NADESs were prepared by heating and stirring their components until a clear solution was formed. The extraction yields of NADESs were compared with conventional solvents like 100% ethanol, 100% methanol, 50% ethanol, and 50% methanol for extracting phenolic compounds. The chosen NADES was processed with Ultrasonic Assisted Extraction (UAE). The total phenolic content (TPC) in the extracts was measured using a gallic acid standard curve and spectrophotometry. The extract with the highest TPC value from NADES extraction was evaluated for phytochemicals using FTIR and tested for antimicrobial activity with the disc diffusion method. Based on the screening of different NADESs, the highest phenolic content was recorded by lactic acid: glycerol system at 135.74 mg GAE g−1 dw. The lowest TPC value was recorded with sodium acetate: glycerol system, which was 32.76 mg GAE g−1 dw. Among the conventional solvents, the highest TPC value was recorded by 50% ethanol at 133.09 mg GAE g−1 dw, and the lowest TPC value was by 100% ethanol at 67.18 mg GAE g−1 dw. The use of UAE with lactic acid: glycerol NADES system yields the highest TPC value of 142.87 mg GAE g−1 dw. Harumanis extract using NADES-3 had saponins, phenols, glycosides, tannins, and antimicrobial activity on gram-positive and gram-negative bacteria. The results show that NADES effectively extracts phenolic compounds from Harumanis leaves, which have significant therapeutic potential.
Downloads
Metrics
References
Ahmad, R., Alqathama, A., Aldholmi, M., Riaz, M., Abdalla, A.N., Aljishi, F., Althomali, E., Amir, M., Abdullah, O., Alamer, M. A., Alaswad, D., Alsulais, W. & Alsulays, A. 2023. Antidiabetic and anticancer potentials of Mangifera indica L. from different geographical origins. Pharmaceuticals, 16(3): 350. DOI: https://doi.org/10.3390/ph16030350
Aifaa, N.H.Y. & Suhanna, A. 2015. Effect of Trichoderma on postharvest quality of Harumanis mango. Journal of Tropical Agriculture and Food Science, 43(1): 21-28.
Airouyuwa, J.O., Mostafa, H., Riaz, A. & Maqsood, S. 2022. Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: an investigation into optimization of process parameters. Ultrasonic Sonochemistry, 91: 106233. DOI: https://doi.org/10.1016/j.ultsonch.2022.106233
Ajila, C.M., Bhat, S.G. & Rao, U.P. 2007. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chemistry, 102(4): 1006-1011. DOI: https://doi.org/10.1016/j.foodchem.2006.06.036
Akli, H., Grigorakis, S., Kellil, A., Loupassaki, S., Makris, D.P., Calokerinos, A.C., Mati, A. & Lydakis-Simantiris, N. 2022. Extraction of polyphenols from Olive leaves employing deep eutectic solvents: the application of chemometrics to a quantitative study on antioxidant compounds. Applied Sciences, 12(2): 831. DOI: https://doi.org/10.3390/app12020831
Aquino, G., Basilicata, M.G., Crescenzi, C., Vestuto, V., Salviati, E., Cerrato, M., Ciaglia, T., Sansone, F., Pepe, G. & Campiglia, P. 2023. Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using Box-Behnken design. Scientific Reports, 13: 14923. DOI: https://doi.org/10.1038/s41598-023-42303-x
Bakirtzi, C., Triantafyllidou, K. & Makris, D.P. 2016. Novel lactic acid-based natural deep eutectic solvents: efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3): 120-127. DOI: https://doi.org/10.1016/j.jarmap.2016.03.003
Cannavacciuolo, C., Pagliari, S., Frigerio, J., Giustra, C.M., Labra, M. & Campone, L. 2022. Natural Deep Eutectic Solvents (NADESs) Combined with sustainable extraction techniques: A review of the green chemistry approach in food analysis. Foods. 2022, 12(1): 56. DOI: https://doi.org/10.3390/foods12010056
Cao, Y., Song, Z., Dong, C., Ni, W., Xin, K., Yu, Q. & Han, L. 2023. Green ultrasound-assisted natural deep eutectic solvent extraction of phenolic compounds from waste broccoli leaves: Optimization, identification, biological activity, and structural characterization. LWT, 190: 115407. DOI: https://doi.org/10.1016/j.lwt.2023.115407
Chen, S., Xiao, L., Li, S., Meng, T., Wang, L. & Zhang, W. 2022. The effect of sonication-synergistic natural deep eutectic solvents on extraction yield, structural and physicochemical properties of pectins extracted from mango peels. Ultrasonics Sonochemistry, 86: 106045. DOI: https://doi.org/10.1016/j.ultsonch.2022.106045
Dai, Y., Van Spronsen, J., Witkamp, G.J., Verpoorte, R. & Hae Choi, Y. 2013. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766: 61-68. DOI: https://doi.org/10.1016/j.aca.2012.12.019
Durand, E., Villeneuve, P., Bourlieu-Lacanal, C. & Carrière, F. 2021. Natural deep eutectic solvents: hypothesis for their possible roles in cellular functions and interaction with membranes and other organized biological systems. In: Eutectic solvents and stress in plants. R. Verpoorte (Ed.). Academic Press, London. pp. 133-158. DOI: https://doi.org/10.1016/bs.abr.2020.09.005
Fanali, C., Gallo, V., Della Posta, S., Dugo, L., Mazzeo, L., Cocchi, M., Piemonte, V. & De Gara, L. 2021. Choline Chloride-Lactic Acid-based NADES as an extraction medium in a response surface methodology-optimized method for the extraction of phenolic compounds from hazelnut skin. Molecules, 26(9): 2652 DOI: https://doi.org/10.3390/molecules26092652
Freitas, D.S., Rocha, D., Castro, T.G., Noro, J., Castro, V.I.B., Teixeira, M.A., Reis, R.L., Cavaco-Paulo, A. & Silva, C. 2022. Green extraction of cork bioactive compounds using natural deep eutectic mixtures. ACS Sustainable Chemical Engineering, 10(24): 7974-7989. DOI: https://doi.org/10.1021/acssuschemeng.2c01422
García, A., Rodríguez-Juan, E., Rodríguez-Gutiérrez, G., Rios, J.J. & Fernández-Bolaños, J. 2016. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chemistry, 197: 554-561. DOI: https://doi.org/10.1016/j.foodchem.2015.10.131
García-Mahecha, M., Soto-Valdez, H., Carvajal-Millan, E., Madera-Santana, T.J., Lomelí-Ramírez, M.G. & Colín-Chávez, C. 2023. Bioactive compounds in extracts from the agro-industrial waste of mango. Molecules, 28(1): 458. DOI: https://doi.org/10.3390/molecules28010458
Gomes, C.C.F., De Siqueira Oliveira, L., Rodrigues, D.C., Ribeiro, P.R.V., Canuto, K.M., Duarte, A.S.G., Eça, K.S. & De Figueiredo, R.W. Antioxidant and anti-inflammatory potential of mango (Mangifera indica L.) in naproxen-induced gastric lesions in rat. Journal of Food Biochemistry, 2021, 46(3): 1. DOI: https://doi.org/10.1111/jfbc.13880
Grozdanova, T., Trusheva, B., Alipieva, K., Popova, M., Dimitrova, L., Najdenski, H., Zaharieva, M. M., Ilieva, Y., Vasileva, B., Miloshev, G., Georgieva, M. & Bankova, V. 2020. Extracts of medicinal plants with natural deep eutectic solvents: enhanced antimicrobial activity and low genotoxicity. BMC Chemistry, 14(1): 73. DOI: https://doi.org/10.1186/s13065-020-00726-x
Guo, H., Liu, S., Li, S., Feng, Q., Ma, C., Zhao, J. & Xiong, Z. 2020. Deep eutectic solvent combined with ultrasound-assisted extraction as a highly efficient extractive medium for extraction and quality evaluation of Herba Epimedii. Journal of Pharmaceutical and Biomedical Analysis, 185: 113228. DOI: https://doi.org/10.1016/j.jpba.2020.113228
Hidalgo, G.I. & Almajano, M.P. 2017. Red Fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A Review. Antioxidants, 6(1): 7. DOI: https://doi.org/10.3390/antiox6010007
Ibrahim, M.F., Ahmad, Sa'ad, F.S., Zakaria, A. & Md Shakaff, A.Y. 2016. In-Line Sorting of Harumanis mango based on external quality using visible imaging. Sensors, 16(11): 1753. DOI: https://doi.org/10.3390/s16111753
Jeong K.M., Jin Y., Yoo D.E., Han S.Y., Kim E.M. & Lee J. 2018. One-step sample preparation for convenient examination of volatile monoterpenes and phenolic compounds in Peppermint leaves using deep eutectic solvents. Food Chemistry, 251: 69-76. 28. DOI: https://doi.org/10.1016/j.foodchem.2018.01.079
Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M. & Mekhemar, M. 2021. Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2): 299. DOI: https://doi.org/10.3390/antiox10020299
Lanjekar, K.J., Gokhale, S. & Rathod, V.K. 2022. Utilization of waste mango peels for extraction of polyphenolic antioxidants by ultrasound-assisted natural deep eutectic solvent. Bioresource Technology, 18: 101074. DOI: https://doi.org/10.1016/j.biteb.2022.101074
Liu, P., Hao, J.-W., Mo, L. & Zhang, Z. 2015. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advance, 5(60): 48675-48704. DOI: https://doi.org/10.1039/C5RA05746A
Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S. N. & Pauli, G.F. 2018. Natural deep eutectic solvents: properties, applications, and perspectives. Journal of Natural Products, 81(3): 679-690. DOI: https://doi.org/10.1021/acs.jnatprod.7b00945
Makris, D.P. & Lalas, S. 2020. Glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction: The evidence so far. Molecules, 25: 5842. DOI: https://doi.org/10.3390/molecules25245842
Mansinhos, I., Gonçalves, S., Rodríguez-Solana, R., Ordóñez-Díaz, J.L., Moreno-Rojas, J.M. & Romano, A. 2021. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: A green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants, 10(4): 582. DOI: https://doi.org/10.3390/antiox10040582
Mirza, B., Croley, C. R., Ahmad, M., Pumarol, J., Das, N., Sethi, G. & Bishayee, A. 2020. Mango (Mangifera indica L.): A plant with cancer preventive and anticancer therapeutic potential. Critical Reviews in Food Science and Nutrition, 61(13): 2125-2151. DOI: https://doi.org/10.1080/10408398.2020.1771678
Nam M.W., Zhao J., Lee M.S., Jeong J.H. & Lee J. 2015. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chemistry, 17: 1718-1727. DOI: https://doi.org/10.1039/C4GC01556H
Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L. & Duarte, A.R.C. 2014. Natural deep eutectic solvents - solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5): 1063-1071. DOI: https://doi.org/10.1021/sc500096j
Pal, C.B.T. & Jadeja, G.C. 2020. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Science Technology International, 26(1): 78-92. DOI: https://doi.org/10.1177/1082013219870010
Pal, C.B.T., & Jadeja, G.C. 2024. Optimization and kinetics of polyphenol recovery from raw mango (Mangifera indica L.) peel using a glycerol-sodium acetate deep eutectic solvent system. Biomass Conversion and Biorefinery, 14(2): 2453-2465. DOI: https://doi.org/10.1007/s13399-022-02550-w
Peron, R.V., Abu Bakar, A.R., Mohd Zainuddin, M.A., Yee, A.Q., Nik Daud, N.M.A., Abdul Rahman, A.M. & Khairuddin, N.H. 2024. Insights into the pharmacognostic elucidation of Harumanis mango (Mangifera indica Linn.) leaves extracts as therapeutic agent. Journal of Advanced Research in Micro and Nano Engineering, 17(1): 28-41. DOI: https://doi.org/10.37934/armne.17.1.2841
Rahman, A.M.A., Sabri, S.F.M., Yusuf, A., Zakaria, A. & Kumar, S.V. 2020. Chloroplast DNA sequence of trnR-N and trnL-F regions in 'Harumanis' mango from different orchards in Perlis, Malaysia. IOP Conf. Series: Material Science & Engineering, 932: 012028. DOI: https://doi.org/10.1088/1757-899X/932/1/012028
Rahman, A.M.A., Zakaria, Z.Y., Wahab, Z., Subbiah, V.K. & Leman, N. 2018. DNA sequences of the chloroplast trnL-F locus in Harumanis mango. AIP Conference Proceedings, 2030: 020133. DOI: https://doi.org/10.1063/1.5066774
Rao, U.M., Abdurrazak, M. & Mohd, K.S. 2016. Phytochemical screening, total flavonoid, and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Sciences, 20(5): 1181-1190. DOI: https://doi.org/10.17576/mjas-2016-2005-25
Rojas, R., Alvarez-Pérez, O.B., Contreras-Esquivel, J.C., Vicente, A., Flores, A., Sandoval, J. & Aguilar, C.N. 2020. Valorisation of mango peels: Extraction of pectin and antioxidant and antifungal polyphenols. Waste and Biomass Valorization, 11: 89-98. DOI: https://doi.org/10.1007/s12649-018-0433-4
Shi, X., Yang, Y., Ren, H., Sun, S., Mu, L.T., Chen, X., Wang, Y., Zhang, Y., Wang, L.H., & Sun, C. 2020. Identification of multiple components in deep eutectic solvent extract of Acanthopanax senticosus root by ultra-high-performance liquid chromatography with quadrupole orbitrap mass spectrometry. Phytochemistry Letters, 35: 175-185. DOI: https://doi.org/10.1016/j.phytol.2019.11.017
Siamandoura, P., & Tzia, C. 2023. Comparative study of novel methods for olive leaf phenolic compound extraction using NADES as solvents. Molecules, 28: 353. DOI: https://doi.org/10.3390/molecules28010353
Smith, E.L., Abbott, A.P., Ryder, K.S. 2014. Deep Eutectic Solvents (DESs) and their applications. Chemical Review, 114(21): 11060-11082. DOI: https://doi.org/10.1021/cr300162p
Sutivisedsak, N., Cheng, H.N., Willett, J.L., Lesch, W.C., Tangsrud, R.R. & Biswas, A. 2010. Microwave-assisted extraction of phenolics from bean (Phaseolus vulgaris L.). Food Research International, 43(2): 516-519. DOI: https://doi.org/10.1016/j.foodres.2009.09.014
Tang, B., Zhang, H., Row, K.H. 2015. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science, 38(6): 1053-1064. DOI: https://doi.org/10.1002/jssc.201401347
Umamahesh, K., Sivudu, S.N., & Reddy, O.V.S. 2016. Evaluation of antioxidant activity, total phenolics and total flavonoids in peels of five cultivars of mango (Mangifera indica) fruit. Journal of Medicinal Plants Studies, 4(2): 200-203.
Yang, J., Yan, Z., Li, L., Zhang, L., Zhao, M., Yi, H., Ma, C. 2023. Green extraction of phenolic compounds from Lotus (Nelumbo nucifera Gaertn) leaf using deep eutectic solvents: Process optimization and antioxidant Activity. Separations, 10(5): 272. DOI: https://doi.org/10.3390/separations10050272
Yusuf, A., Rahman, A.M.A., Zakaria, Z. & Wahab, Z. 2018a. Assessment of variations in selected industrially desirable morphological and biochemical traits of 'Harumanis' from different populations across Perlis. AIP Conference Proceedings, 2030: 020248. DOI: https://doi.org/10.1063/1.5066889
Yusuf, A., Rahman, A.M.A., Zakaria, Z., Masnan, M.J. & Wahab, Z. 2020. Morphological variability identification of Harumanis mango (Mangifera indica L.) across different geographical regions of Perlis and tree age. Tropical Life Science Research Journal, 31(2): 107-143. DOI: https://doi.org/10.21315/tlsr2020.31.2.6
Yusuf, A., Rahman, A.M.A., Zakaria, Z., Wahab, Z. & Kumar, S.V. 2018b. Assessment of variability pattern of flesh color in 'Harumanis' mango (Mangifera indica L.) from diverse Perlis geographical origin. Food Research, 2(6): 564-571. DOI: https://doi.org/10.26656/fr.2017.2(6).108
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2022/STG01/UNIMAP/02/2