Identification and Evaluation of Locally Isolated Fungi Through Rapid Screening for Potential Mycelium-Based Biofoam Application in Malaysia
Keywords:
Fungal screening, Ligninolytic enzymes, Mycelium-based composite, White rot fungusAbstract
Expanded polystyrene foam (EPS) contributes to environmental problems due to its inability to decompose in nature within a short period. In addition, petroleum as a core source for EPS is now depleting and new biological and environmentally friendly approaches are encouraged. As an alternative to EPS, mycelium-based biofoam (MBF) is a new foam technology formed of agricultural biomass and mycelium as a binding matrix is introduced. However, based on previous literature, the fungal strains used are mainly highlighted as one of the main factors which affect the final properties of MBF. Thus, this study aims to evaluate the most potential fungus used for MBF application using OPEFB, biomass from the palm oil industry as novel substrate using rapid screening. Twelve local fungi isolated from a local forest in Selangor, Malaysia were cultivated on Potato Dextrose Agar and OPEFB plate before being screened on agar containing four different types of dye indicators, which are methylene blue, guaiacol, Remazol Brilliant Blue R and azure B. As a result, Phanerochaete concrescens isolate LYN-UPM S1 and Perenniporia subtephropora isolate LYN-UPM S9 have shown the ability to produce ligninolytic enzymes and high content of chitin, which will be useful for the fabrication of mycelium-based biofoam.
Downloads
Metrics
References
Abd El Monssef, R.A., Hassan, E.A.& Ramadan, E.M. 2016. Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. Annals of Agricultural Sciences, 61(1): 145-154. DOI: https://doi.org/10.1016/j.aoas.2015.11.007
Alsohaili, S.A. & Bani-Hasan, B.M. 2018. Morphological and molecular identification of fungi isolated from different environmental sources in the Northern Eastern Desert of Jordan. Jordan Journal of Biological Sciences, 11(3): 329-337.
Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P. & Wösten, H.A.B. 2019. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials and Design, 161: 64-71. DOI: https://doi.org/10.1016/j.matdes.2018.11.027
Arbaain, E.N.N., Bahrin, E.K., Ibrahim, M.F., Ando, Y. & Abd-aziz, S. 2019. Biological pretreatment of oil palm empty fruit washing and nutrient addition. Processes, 7(7): 402. DOI: https://doi.org/10.3390/pr7070402
Arifin, Y.H. & Yusuf, Y. 2013. Mycelium fibers as new resource for environmental sustainability. Procedia Engineering, 53: 504-508. DOI: https://doi.org/10.1016/j.proeng.2013.02.065
Attias, N. & Grobman, J.Y. 2017. Developing novel applications of mycelium based bio-composite materials for design and architecture. In: Building with bio-based materials: Best practice and performance specification, Zagreb, Croatia.
Babitha, S., Soccol, C.R. & Pandey, A. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology, 98(8): 1554-1560. DOI: https://doi.org/10.1016/j.biortech.2006.06.005
Bolhassan, M.H., Abdullah, N., Sabaratnam, V., Tsutomu, H., Abdullah, S., Rashid, N.M.N. & Musa, M.Y. 2012. Diversity and distribution of Polyporales in Peninsular Malaysia. Sains Malaysiana, 41(2): 155-161.
Bruscato, C., Malvessi, E., Brandalise, R.N. & Camassola, M. 2019. High performance of macrofungi in the production of mycelium-based biofoams using sawdust - Sustainable technology for waste reduction. Journal of Cleaner Production, 121: 225-232. DOI: https://doi.org/10.1016/j.jclepro.2019.06.150
Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martínez, M.J. & Martínez, Á.T. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. Journal of Biological Chemistry, 274(15): 10324-10330. DOI: https://doi.org/10.1074/jbc.274.15.10324
da Costa Souza, P.N., Grigoletto, T.L.B., de Moraes, L.A.B., Abreu, L.M., Guimarães, L.H.S., Santos, C., Galvão, L.R. & Cardoso, P.G. 2016. Production and chemical characterization of pigments in filamentous fungi. Microbiology, 162(1): 12-22. DOI: https://doi.org/10.1099/mic.0.000168
Erdmann, S., Freihorst, D., Raudaskoski, M., Schmidt-Heck, W., Jung, E.M., Senftleben, D. & Kothea, E. 2012. Transcriptome and functional analysis of mating in the basidiomycete Schizophyllum commune. Eukaryotic Cell, 11(5): 571-589. DOI: https://doi.org/10.1128/EC.05214-11
Falade, A.O., Nwodo, U.U., Iweriebor, B.C., Green, E., Mabinya, L.V. & Okoh, A.I. 2017. Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 6(1): 1-14. DOI: https://doi.org/10.1002/mbo3.394
Ferhan, M., Santos, S.N., Melo, I.S., Yan, N. & Sain, M. 2013. Identification of a potential fungal species by 18S rDNA for ligninases production. World Journal of Microbiology and Biotechnology, 29(12): 2437-2440. DOI: https://doi.org/10.1007/s11274-013-1398-x
Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J. & Gursoy, B. 2020. Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength. In: Education and Research in Computer Aided Architectural Design in Europe and XXIII Iberoamerican Society of Digital Graphics, Joint Conference (N. 1). pp. 505-514.
Ghebreslasie, Z., Premjet, D. & Permjet, S. 2016. Screening of fungi producing ligninolytic enzymes by plate test technique. KKU Research Journal, 21(2): 200-209.
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A. & Athanassiou, A. 2017. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Scientific Reports, 7: 41292. DOI: https://doi.org/10.1038/srep41292
Harris, S.D. 2008. Branching of fungal hyphae: Regulation, mechanisms and comparison with other branching systems. Mycologia, 100(6): 823-832. DOI: https://doi.org/10.3852/08-177
Harris, S.D. 2019. Hyphal branching in filamentous fungi. Developmental Biology, 451(1): 35-39. DOI: https://doi.org/10.1016/j.ydbio.2019.02.012
Hattori, T., Yamashita, S. & Lee, S.S. 2012. Diversity and conservation of wood-inhabiting polypores and other aphyllophoraceous fungi in Malaysia. Biodiversity and Conservation, 21(9): 2375-2396. DOI: https://doi.org/10.1007/s10531-012-0238-x
Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R.C. 2017. Morphology and mechanics of fungal mycelium. Scientific Reports, 7: 13070. DOI: https://doi.org/10.1038/s41598-017-13295-2
Islam, M.R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R.C. 2018. Mechanical behavior of mycelium-based particulate composites. Journal of Materials Science, 53: 16371–16382. DOI: https://doi.org/10.1007/s10853-018-2797-z
Jarosz-Wilkołazka, A., Kochmańska-Rdest, J., Malarczyk, E., Wardas, W. & Leonowicz, A. 2002. Fungi and their ability to decolourize azo and anthraquinonic dyes. Enzyme and Microbial Technology, 30(4): 566-572. DOI: https://doi.org/10.1016/S0141-0229(02)00022-4
Jiang, L., Walczyk, D., Mooney, L. & Putney, S. 2016. Manufacturing of Mycelium-based Biocomposites. July.
Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C.H. & John, S. 2018. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire and Materials, 42(7): 816-825. DOI: https://doi.org/10.1002/fam.2637
Jones, M., Huynh, T., Dekiwadia, C., Daver, F. & John, S. 2017. Mycelium composites: A review of engineering characteristics and growth kinetics. Journal of Bionanoscience, 11(4): 241-257. DOI: https://doi.org/10.1166/jbns.2017.1440
Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. 2020. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 187: 108397. DOI: https://doi.org/10.1016/j.matdes.2019.108397
Kiiskinen, L.L., Rättö, M. & Kruus, K. 2004. Screening for novel laccase-producing microbes. Journal of Applied Microbiology, 97(3): 640-646. DOI: https://doi.org/10.1111/j.1365-2672.2004.02348.x
Krull, R., Wucherpfennig, T., Esfandabadi, M.E., Walisko, R., Melzer, G., Hempel, D.C., Kampen, I., Kwade, A. & Wittmann, C. 2013. Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of Biotechnology, 163(2): 112-123. DOI: https://doi.org/10.1016/j.jbiotec.2012.06.024
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. DOI: https://doi.org/10.1093/molbev/msy096
Kusai, N.A., Ayob, Z., Maidin, M.S.T., Safari, S. & Ahmad Ali, S.R. 2018. Characterization of fungi from different ecosystems of tropical peat in Sarawak, Malaysia. Rendiconti Lincei, 29(2): 469-482. DOI: https://doi.org/10.1007/s12210-018-0685-8
Levin, L., Papinutti, L. & Forchiassin, F. 2004. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresource Technology, 94(2): 169-176. DOI: https://doi.org/10.1016/j.biortech.2003.12.002
Liu, R., Long, L., Sheng, Y., Xu, J., Qiu, H., Li, X., Wang, Y. & Wu, H. 2019. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Industrial Crops and Products, 141: 111732. DOI: https://doi.org/10.1016/j.indcrop.2019.111732
Madadi, M. & Abbas, A. 2017. Lignin degradation by fungal pretreatment: A review. Journal of Plant Pathology & Microbiology, 8: 2. DOI: https://doi.org/10.4172/2157-7471.1000398
Moemen, D., Bedir, T., Awad, E.A. & Ellayeh, A. 2015. Fungal keratitis: Rapid diagnosis using methylene blue stain. Egyptian Journal of Basic and Applied Sciences, 2(4): 289-294. DOI: https://doi.org/10.1016/j.ejbas.2015.08.001
Okereke O.E, Akanya H.O, Ogbadu G.H, Egwim E.C, Etim V.A. & Akande, S.A. 2017. Development and optimization of a surface sterilization protocol for the tissue culture of Pleurotus tuber-regium (Fr) Sing. and Auricularia auricula-judae. International Journal of Biochemistry, Bioinformatics and Biotechnology Studies, 2(3): 1-9. DOI: https://doi.org/10.37745/ijbbbs.15/vol7n2110
Ramli Sulong, N.H., Mustapa, S.A.S. & Abdul Rashid, M.K. 2019. Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136(20): 47529. DOI: https://doi.org/10.1002/app.47529
Saito, Y., Tsuchida, H., Matsumoto, T., Makita, Y., Kawashima, M., Kikuchi, J. & Matsui, M. 2018. Screening of fungi for decomposition of lignin-derived products from Japanese cedar.Journal of Bioscience and Bioengineering, 126(5): 573-579. DOI: https://doi.org/10.1016/j.jbiosc.2018.05.001
Saitou, N. & Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4): 406-425.
Sakurai, Y., Lee, T.H. & Shiota, H. 1977. On the convenient method for glucosamine in koji. Bioscience, Biotechnology & Biochemistry, 41(4): 619-624. DOI: https://doi.org/10.1080/00021369.1977.10862552
Saroj, P., Manasa, P. & Narasimhulu, K. 2018. Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresources and Bioprocessing, 5(1). DOI: https://doi.org/10.1186/s40643-018-0216-6
Steinfeld, L., Vafaei, A., Rösner, J. & Merzendorfer, H. 2019. Chitin prevalence and function in bacteria, fungi and protists. In: Targeting Chitin-containing Organisms. Q. Yang and T. Fukamizo (Eds.). Springer. DOI: https://doi.org/10.1007/978-981-13-7318-3_3
Stoykov, Y.M., Pavlov, A.I. & Krastanov, A.I. 2015. Chitinase biotechnology: Production, purification, and application. Engineering in Life Sciences, 15(1): 30-38. DOI: https://doi.org/10.1002/elsc.201400173
Vega, K. & Kalkum, M. 2012. Chitin, chitinase responses, and invasive fungal infections. International Journal of Microbiology, 2012: 920459. DOI: https://doi.org/10.1155/2012/920459
White, T.J., Bruns, T.D., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White (Eds.). Academic Press. pp. 315-322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Yao, H.-M., Wang, G., Liu, Y.-P., Rong, M.-Q., Shen, C.-B., Yan, X.-W., Luo, X.-D. & Lai, R. 2016. Phenolic acids isolated from the fungus Schizophyllum commune exert analgesic activity by inhibiting voltage-gated sodium channels. Chinese Journal of Natural Medicines, 14(9): 661-670. DOI: https://doi.org/10.1016/S1875-5364(16)30078-4
Zakaria, L., Li Yee, T., Zakaria, M. & Salleh, B. 2011. Diversity of microfungi in sandy beach soil of Teluk Aling, Pulau Pinang. Tropical Life Sciences Research, 22(1): 71-80.
Zutz, C., Gacek, A., Sulyok, M., Wagner, M., Strauss, J. & Rychli, K. 2013. Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins, 5(10): 1723-1741. DOI: https://doi.org/10.3390/toxins5101723
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2018/STG05/UPM/02/23