Isolation and Identification of Acetobacter tropicalis From Selected Malaysian Local Fruits for Potential BC Production

https://doi.org/10.55230/mabjournal.v52i4.a048

Authors

  • Tan Yong Jie Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Junaidi Zakaria Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Shahril Mohamad Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Chua Gek Kee Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Nurshahfiqah Latif Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
  • Mohd Hairul Ab Rahim Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia

Keywords:

16S rRNA, Acetobacter spp., bacterial cellulose, BLASTn analysis, isolation, local fruits

Abstract

Acetobacter spp. that are commonly found on fruits, can perform oxidation processes, resulting in acetic acid production in vinegar. Besides that, Acetobacter spp. able to produce bacterial cellulose (BC), which is an essential by-product. This present study was carried out to isolate Acetobacter spp. from selected local fruits. Species verification of the bacterial isolates was performed using molecular and bioinformatic approaches. A total of six local fruits (starfruit, jackfruit, watermelon, pineapple, honeydew & banana) were subjected to seven days of fermentation in a brown sugar solution. Acetobacter spp. were isolated from the fermented medium using bromocresol green ethanol agar as the selective medium. Thirteen bacterial isolates were obtained and subjected to molecular works, including DNA extraction and PCR amplification using universal primers, targeting the 16S rRNA genes. PCR-amplified products were selected for single-pass sequencing. BLASTn analysis of the sequencing results showed three isolates (23.1%) belonging to Acetobacter tropicalis and one isolate (7.7%) representing Gluconobacter oxydans might have potential in BC production. However, the remaining nine isolates (69.2%) hit the Lactobacillus genus. Morphological observation using FESEM showed that the BC produced by all the positive bacterial isolates is similar to dried nata de coco and BC produced by Acetobacter xylinum. In addition, four similar regions of -OH stretch (3400 - 3300 cm-1), -CH stretch (2970 to 2800 cm-1), -OH bending (1620 cm-1), and -COC stretch (1100 to 1073 cm-1) are identified in the BC samples. In the future, the isolated Acetobacter and Gluconobacter strains could be further utilized for large-scale BC production in a suitable fermentation medium.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Azeredo, H.M.C., Barud, H., Farinas, C.S., Vasconcellos, V.M. & Claro, A.M. 2019. Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3: 7. DOI: https://doi.org/10.3389/fsufs.2019.00007

Barud, H.S., Ribeiro, C.A., Crespi, M.S., Martines, M.A.U., Dexpert-Ghys, J., Marques, R.F.C., Messaddeq, Y. & Ribeiro, S.J.L. 2007. Thermal characterization of bacterial cellulose-phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, 87: 815-818. DOI: https://doi.org/10.1007/s10973-006-8170-5

Choi, S.M. & Shin, E. J. 2020. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials, 10: 406. DOI: https://doi.org/10.3390/nano10030406

Chua, G.K., Tan, F.H.Y., Chew, F.N. & Mohd-Hairul, A.R. 2019. Nutrients content of food wastes from different sources and its pre-treatment. AIP Conference Proceedings, 2124(1): 020031. DOI: https://doi.org/10.1063/1.5117091

Chua, G.K., Tan, F.H.Y., Chew, F.N., Mohd-Hairul, A.R. & Ahmad, M.A.A. 2020. Food waste hydrolysate as fermentation medium: Comparison of pre-treatment methods. Materials Today: Proceedings, 42: 131-137. DOI: https://doi.org/10.1016/j.matpr.2020.10.399

Chung, K.T., Dickson, J.S. & Crouse, J.D. 1989. Effects of nisin on growth of bacteria attached to meat. Applied and Environmental Microbiology, 55(6): 1329-1333. DOI: https://doi.org/10.1128/aem.55.6.1329-1333.1989

Fang, T.T., Mortan, S.H., Mei, L.C., Adzahar, N.S. & Mohd-Hairul, A.R. 2019. Isolation and identification of lactic acid bacteria from selected local medicinal plants. Malaysian Journal of Biochemistry and Molecular Biology, 1: 106-109.

Hashim, N.A.R.N.A., Zakaria, J., Mohamad, S., Mohamad, S.F.S. & Rahim, M.H.A. 2021. Effect of different treatment methods on the purification of bacterial cellulose produced from OPF juice by Acetobacter xylinum. IOP Conference Series: Materials Science and Engineering, 1092(1): 012058. DOI: https://doi.org/10.1088/1757-899X/1092/1/012058

Hidalgo, C., García, D., Romero, J., Mas, A., Torija, M.J. & Mateo, E. 2013. Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine. Letters in Applied Microbiology, 57(3): 227-232. DOI: https://doi.org/10.1111/lam.12104

Huang, X. & Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome Research, 9: 868-877. DOI: https://doi.org/10.1101/gr.9.9.868

Ismail, M.F., Sabri, N.A., Tajuddin, S.N., Mei, L.C., Mortan, S.H. & Mohd-Hairul, A.R. 2019. Isolation and identification of denitrifying bacteria from indigenous microorganisms. Malaysian Journal of Biochemistry and Molecular Biology, 1: 17-21.

Khemariya, P., Singh, S., Jaiswal, N. & Chaurasia, S.N.S. 2016. Isolation and identification of Lactobacillus plantarum from vegetable samples. Food Biotechnology, 30(1): 49-62. DOI: https://doi.org/10.1080/08905436.2015.1132428

Klawpiyapamornkun, T., Bovonsombut, S. & Bovonsombut, S. 2015. Food and Applied Bioscience Journal, 3(1): 30-38.

Kowser, J., Aziz, M.G. & Uddin, M.B. 2015. Isolation and characterization of Acetobacter aceti from rotten papaya. Journal of Bangladesh Agricultural University, 13(2): 299-306. DOI: https://doi.org/10.3329/jbau.v13i2.28802

Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Goncalves-Miskiewicz, M., Turkiewicz, M. & Bielecki, S. 2002. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29: 189-195. DOI: https://doi.org/10.1038/sj.jim.7000303

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547-1549. DOI: https://doi.org/10.1093/molbev/msy096

Marsh, A.J., O'Sullivan, O., Hill, C., Ross, R.P. & Cotter, P.D. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38: 171-178. DOI: https://doi.org/10.1016/j.fm.2013.09.003

Rajwade, J.M., Paknikar, K.M. & Kumbhar, J.V. 2015. Applications of bacterial cellulose and its composites in biomedicine. Applied Microbiology and Biotechnology, 99: 2491-511. DOI: https://doi.org/10.1007/s00253-015-6426-3

Reiniati, I., Hrymak, A.N. & Margaritis, A. 2017. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37: 510-524. DOI: https://doi.org/10.1080/07388551.2016.1189871

Ross, P., Mayer, R. & Benziman, M. 1991. Cellulose biosynthesis and function in bacteria. Microbiology Review, 55: 35-58. DOI: https://doi.org/10.1128/mr.55.1.35-58.1991

Sharafi, S.M., Rasooli, I. & Beheshti-Maal, K. 2010. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods. Iranian Journal of Microbiology, 2(1): 38-45.

Shi, Z., Zhang, Y., Phillips, G.O. & Yang, G. 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids, 35: 539-545. DOI: https://doi.org/10.1016/j.foodhyd.2013.07.012

Sumardee, N.S.J., Mohd-Hairul, A.R. & Mortan, S.H. 2020. Effect of inoculum size and glucose concentration for bacterial cellulose production by Lactobacillus acidophilus. IOP Conference Series: Materials Science and Engineering, 991(1): 012054. DOI: https://doi.org/10.1088/1757-899X/991/1/012054

Syarif, M.S. & Erina, S. 2016. Molecular characteristics and identification of lactic acid bacteria of pineapple waste as probiotics candidates for ruminants. Pakistan Journal of Nutrition, 15(6): 519-523. DOI: https://doi.org/10.3923/pjn.2016.519.523

Voon, W.W.Y., Rukayadi, Y. & Meor Hussin A.S. 2016. Isolation and identification of biocellulose-producing bacterial strains from Malaysian acidic fruits. Letters in Applied Microbiology, 62(5): 428-433. DOI: https://doi.org/10.1111/lam.12568

Zhao, H., Li, J. & Zhu, K. 2018. Bacterial cellulose production from waste products and fermentation conditions optimization. IOP Conference Series: Materials Science and Engineering, 394: 022041. DOI: https://doi.org/10.1088/1757-899X/394/2/022041

Zhong, C. 2020. Industrial-scale production and applications of bacterial cellulose. Frontiers in Bioengineering and Biotechnology, 8: 605374. DOI: https://doi.org/10.3389/fbioe.2020.605374

Published

31-10-2023

How to Cite

Jie, T. Y., Zakaria, J., Mohamad, S. ., Kee, C. G., Latif, N. ., & Ab Rahim, M. H. . (2023). Isolation and Identification of Acetobacter tropicalis From Selected Malaysian Local Fruits for Potential BC Production. Malaysian Applied Biology, 52(4), 133–143. https://doi.org/10.55230/mabjournal.v52i4.a048

Funding data