Antimicrobial and Enzymatic Activities of Mangrove-associated Actinomycetes

https://doi.org/10.55230/mabjournal.v53i3.2864

Authors

  • Nur Hamizah Nor Hasan Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0009-0009-6329-9592
  • Muhd Danish Daniel Abdullah Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0001-9438-0128
  • Jasnizat Bin Saidin Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

Keywords:

actinomycetes, antimicrobial, enzymatic activities, mangrove, environment

Abstract

This study delves into the enzymatic and antimicrobial capabilities of actinomycetes isolated from the Setiu Wetland mangrove in Terengganu, Malaysia. A total of eighteen actinomycete bacteria were isolated and characterized from the site. These isolates underwent antimicrobial assessments targeting a representative range of Gram-positive bacteria, Gram-negative bacteria  and a fungus were employed for the testing. The results of the antimicrobial evaluations demonstrated pronounced effectiveness of the majority of isolated actinomycetes against Gram-negative bacterial strains. Intriguingly, a notable observation was the inhibition against Streptococcus uberis on nutrient agar by 27.7% of the isolates. In conjunction with the antimicrobial investigations, an array of enzymatic assays encompassing amylase, protease, lipase, phosphate solubilization, urease, and cellulase were executed. The outcomes revealed that a substantial portion of the examined actinomycetes exhibited positive reactions in at least half of the conducted assays, with amylase and protease production being particularly prominent, were observed from 94% of the isolates. These findings, drawn from the amassed dataset, underscore the remarkable diversity of antimicrobial and enzymatic activities within the actinomycetes thriving in the mangrove environment. This diversity exemplifies the adaptability of these mangrove-associated actinomycetes, underscoring their capacity to generate a versatile spectrum of secondary metabolites and biochemical responses as a strategy for survival within this unique ecosystem.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abedinlou, H., Bahrami, Y., Mohammadi, S., & Kakaie, E. 2022. Rare actinobacteria and their potential biotechnological applications. Scientific Journal of Kurdistan University of Medical Sciences 26(7): 108-131.

Al-Dhabi, N.A., Galal, A.E., Abdul-Kareem, M.G., Mariadhas, V.A., Veeramuthu, D. & Karuppiah, P. 2020. Isolation and purification of starch hydrolysing amylase from Streptomyces sp. Al-Dhabi-46 obtained from the Jazan region of Saudi Arabia with industrial applications. Journal of King Saud University. Science, 32: 1226–1232.

Alizadeh, H., Kandula, D. R., Hampton, J. G., Stewart, A., Leung, D. W., Edwards, Y. & Smith, C. 2017. Urease producing microorganisms under dairy pasture management in soils across New Zealand. Geoderma Regional, 11: 78-85.

Andrews, W.H. & Hammack, T.S. 2001. Salmonella. In: Bacteriological Analytical Manual Online, Chapter 5, 9th edition. US FDA Center.

Anteneh, Y.S. & Franco, C.M.M. 2019. Whole cell actinobacteria as biocatalysts. Frontiers in Microbiology 10: 77.

Aryal, S. 2015. Mueller-Hinton agar (MHA) – composition, principle, uses and preparation [WWW Document]. Microbiology info. URL http://www.microbiologyinfo.com/mueller-hintonagar-mha-composition-principle-uses-and-preparation. (accessed 08.15.16).

Anteneh, Y.S., Yang, Q., Brown, M.H. & Franco, C.M. 2021. Antimicrobial activities of marine sponge-associated bacteria. Microorganisms, 9(1): 171.

Barbosa, F., Pinto, E., Kijjoa, A., Pinto, M. & Sousa, E. 2020.Targeting antimicrobial drug resistance with marine natural products. International Journal of Antimicrobial Agents, 56: 1–29.

Balla, A., Silini, A., Cherif-Silini, H., Bouket A. C., Boudechicha, A., Luptakova, L., Alenezi, F.N., Belbahri, L. 2022. Screening of cellulolytic bacteria from various ecosystems and their cellulases production under multi-stress conditions. Catalysts, 12(7): 769.

Benhadj, M., Gacemi-Kirane, D., Toussaint, M., Hotel, L., Bontemps, C., Duval, R.E., Aigle, B. & Leblond, P. 2018. Diversité et activités antimicrobiennes de souches de Streptomyces de la Fetzara (Algérie). Annales de Biologie Clinique, 76(1): 81-95.

Burbank, M.B., Weaver, T. J., Williams, B.C., Crawford, R.L. 2012. Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by in indigenous. Geomicrobiology Journal, 29: 389-395.

Chaudhary, H.S., Soni, B., Shrivastava, A.R. & Shrivastava, S. 2013. Diversity and versatility of actinomycetes and its role in antibiotic production. Journal of Applied Pharmaceutical Science 3: 83-94.

Cho, S.H. 1994. A new medium for the selective isolation of soil actinomycetes. Journal Applied Microbiology Biotechnology, 22: 561-563.

Clinical and Laboratory Standards Institute (CLSI). 2013. Performance standards for antimicrobial susceptibility testing; 23rd Informational supplement M100-S23. CLSI.

Deepa S., Kanimozhi, K. & Panneerselvam, A. 2014. 16S rDNA phylogenetic analysis of actinomycetes isolated from marine environment associated with antimicrobial activities. Journal for Drugs and Medicines, 5: 43-50.

Dhavala, S. & Joel, G.J. 2020. Molecular characterization of actinomycetes from mangrove soil producing industrially important enzymes. Journal of Scientific Research, 64(2): 87-95.

Donkor, E.S., Nortey, T., Opintan, J. & Akyeh, M.L. 2007. Antimicrobial susceptibility of Salmonella typhi and Staphylococcus aureus isolates and the effect of some media on susceptibility testing results. Internet Journal of Microbiology, 4: 1–6.

Eccleston, G.P., Brooks, P.R. & Kurtböke, D.I. 2008. The occurrence of bioactive Micromonosporae in aquatic habitats of the Sunshine Coast in Australia. Marine Drugs, 6: 243-261.

Farshid K., Faranak D., Elham K. & Oranus B.S. 2012. African Journal of Microbiology Research, 6(33): 6281-6285.

Garrod, L.P. & Waterworth, P.M. 1971. A study of antibiotic sensitivity testing with proposals for simple uniform methods. Journal Clinical Pathology, 24: 779–89.

Goel, N., Fatima, S.W., Kumar, S., Sinha, R. & Khare, S.K. 2021. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 30: e00613.

Gopinath, B.V., Vootla, P.K., Jyothi, R. & Reddy, S.K. 2013. Antimicrobial activity of actinomycetes isolated from coal mine soils of Godavari Belt Region, A.P, India. Asian Journal of Experimental Biological Sciences, 4: 518-523.

Hauser A.R. 2015. Cell envelope. In: Antibiotic Basic for Clinicians. A.R. Hauser (Ed.). Wolters Kluwer (India) Pvt. Ltd. New Delhi. pp. 3–5.

Ibrahimi, M., Korichi, W., Hafidi, M., Lemee, L., Ouhdouch, Y. & Loqman, S. 2020. Marine actinobacteria: Screening for predation leads to the discovery of potential new drugs against multidrug-resistant bacteria. Antibiotics, 9(2): 91.

Kang, C.H., Oh, S.J., Shin, Y., Han, S.H. & Nam, I.H. 2015. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74: 402-407.

Kaaniche, F., Hamed, A., Elleuch, L., Chakchouk-Mtibaa, A., Smaoui, S., Karray-Rebai, I., Koubaa, I., Arcile, G., Allouche, N. & Mellouli, L. 2020. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation. Microbial Pathogenesis, 142: 104106.

Kavitha, A.P. 2010. Isolation, characterization and biological evaluation of bioactive metabolites from Nocardia levis MK-VL_113. Microbiology Research, 165: 199-210.

Khirennas O., Mokhrani, S., Behira, B., Bouras, N. & Moumen, O. 2023. Isolation, identification and screening of Saharan actinomycete strain Streptomyces fimbriatus AC31 endowed with antimicrobial activity. International Journal of Molecular and Cellular Medicine, 12(1): 51-69.

Kumar A. & Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6: e03170.

Kumari, M., Myagmarjav, B.E., Prasad, B. & Choudhary, M. 2013. Identification and characterization of antibiotic-producing actinomycetes isolates. American Journal Microbiology, 4: 24–31.

Law, J.W., Ser ,H.L., Duangjai, A., Saokaew, S., Bukhari, S.I., Khan, T.M., Ab Mutalib, N.S., Chan, K.G., Goh, B.H., Lee, L.H. 2017. Streptomyces colonosanans sp. nov., a novel actinobacterium isolated from Malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Frontiers in Microbiology, 8: 877.

Law, J.W., Ser, H.L., Ab Mutalib, N.S., Saokaew, S., Duangjai, A., Khan, T.M., Chan, K.G., Goh, B.H., Lee, L.H. 2019. Streptomyces monashensis sp.nov., a novel mangrove soil actinobacterium from East Malaysia with anti-oxidative potential. Scienctific Reports, 9(1): 3056.

Leboffe M.J. & Pierce B.E. 2010. Microbiology Laboratory Theory and Application. Morton Publishing Company, Englewood.

Lee, L.C. 2012. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World Journal Microbiology Biotechnology, 28: 2125-2137.

Lestari, S., Mukarlina & Kurniatuhadi, R. 2019. Identifikasi dan deteksi aktivitas daya hambat bakteri actinomycetes yang diisolasi dari tanah gambut di Desa Tajok Kayong Kalimantan Barat. Protobiont 8: 13-9.

Malek, N.A., Chowdhury, A.J.K., Zainuddin, Z. & Abidin, Z.A.Z. 2014. Selective isolation of actinomycetes from mangrove forest of Pahang, Malaysia. In: International Conference on Agriculture, Biology and Environmental Science (ICABES’14) 2014. Bali, Indonesia. pp. 9-13.

Marchese, A., Esposito, S., Barbieri, R., Bassetti, M. & Debbia, E. 2012. Does the adoption of EUCAST susceptibility breakpoints affect the selection of antimicrobials to treat acute community-acquired respiratory tract infections? BMC Infection Disease, 2012(1): 181.

Mayerhof, H., Marshall, R.T., White, C.H. & Lu, M., 1973. Characterization of a heat-stable protease of Pseudomonas fluorescens P26. Applied Microbiology, 25: 44–48.

Mossel, D.A.A. & De Bruin, A.S.A. 1954. Gelatin liquefaction test for the screening of compounds used or proposed as inhibitors of bacterial proteolytic deterioration in foods. Antonie van Leeuwenhoek, 20: 233–240.

Oliveira, J., Almeida, P.L., Sobral, R.G., Lourenço, N.D. & Gaudêncio, S.P. 2022. Marine-derived actinomycetes: Biodegradation of plastics and formation of PHA bioplastics—A circular bioeconomy approach. Marine Drugs, 20: 760.

Ozturkoglu-Budak, S., Wiebenga, A., Bron, P.A. & de Vries, R.P. 2016. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Microbiology 237: 17–27.

Oyeleke, S.B., Auta, H.S. & Egwim, E.C. 2010. Production and characterization of amylase produced by Bacillus megaterium isolated from a local yam peel dumpsite in Minna, Niger State. Journal of Microbiology and Antimicrobials, 2(7):88-92.

Pandey, A., Ali, I., Butola, K.S., Chatterji, T. & Singh, V. 2011. Isolation and characterization of Actinomycetes from soil and evaluation of antibacterial activities of Actinomycetes against pathogens. International journal of Applied Biology and Pharmaceutical Technology, 2(4): 384-392.

Rao, H.Y., Rakshith, D. & Satish, S. 2015. Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India. Frontiers in Biology, 10: 528-536.

Rashmi, S.B. & Satpute, S.K. 2012. Production and optimization of cellulase free alkali thermostable xylanase in a novel cell-associated form isolated from alkaline-treated soil. Journal of Chemistry, 9(3): 1610-1617.

Ryandini D., Radjasa O.K. & Oedjijono. 2018. Isolate Actinomycetes SA32 Origin of Segara Anakan Mangrove rhizosphere and its capability in inhibiting multi-drugs resistant bacteria growth. Journal Microbiology Biochemical Technology 10(1): 1-7.

Saha, S. & Dhanasekaran, D. 2010. Isolation and screening of keratinolytic actinobacteria form keratin waste dumped soil in Tiruchirappalli and Nammakkal, Tamil Nadu, India. Current Research Journal Biological Science, 2(2): 124-131.

Saif, S., Khan, M.S., Zaidi, A. & Ahmad, E. 2014. Role of phosphate-solubilizing actinomycetes in plant growth promotion, current perspective. In: Phosphate Solubilizing Microorganisms: Principle and Application of Microphos Technology. M.S. Khan, A. Zaidi and J. Musarrat (Eds.). Springer International Publishing, Cham. pp.137–156.

Singh, L.S., Sharma, H. & Talukdar, N.C. 2014. Production of potent antimicrobial agent by actinomycete, Streptomyces sannanensis strain SU118 isolated from phoomdi in Loktak Lake of Manipur, India. BMC Microbiology, 14: 1-13.

Strope, P., Nickerson, K.W., Harris, S.D. & Moriyama, E.N. 2011. Molecular evolution of urea amidolyase and urea carboxylase in fungi. BMC Evolution Biology, 11(80): 1-15.

Suryanditha, P.A., Rasita, Y.D., Debora, K. & Kuntaman, K. 2018. icaA/D genes and biofilm formation of methicillin-resistant Staphylococcus aureus in Dr. Soetomo Hospital, Surabaya. Folia Medica Indonesiana, 54(4): 263-268.

Talukdar, M.D. 2012. Bioprospecting Micromonospora from Kaziranga National Park of India and their anti-infective potential. World Journal of Microbiology and Biotechnology, 28: 2703–2712.

Velayudham, S. & Murugan, K. 2012. Diversity and antibacterial screening of Actinomycetes from Javadi Hill Forest Soil, Tamilnadu, India Journal of Microbiology Research, 2: 41-46.

Vijayakumar, R., Panneer Selvam, K., Muthukumar, C., Thajuddin, N., Panneerselvam, A. & Saravanamuthu, R. 2012. Antimicrobial potentiality of a halophilic strain of Streptomyces sp. VPTSA18 isolated from the saltpan environment of Vedaranyam, India. Annals of Microbiology, 62: 1039-1047.

Waksman, S.A., Schatz, A. & Reynolds, D.M. 2010. Production of antibiotic substances by actinomycetes. Annals of New York Academy of Science, 1213: 112–124.

Wen, F., Zhang, Z., He, Y., Chen, Z., Li, M. & Mo, M. 2015. Synergism between urea and urease-positive bacteria in controlling root-knot nematodes. European Journal of Plant Pathology, 141: 179-191.

World Health Organization (WHO). 2021. Antimicrobial Resistance. URL https://www.who.int/news-room/factsheets/detail/antimicrobial-resistance (accessed on 09.10.22).

Xiao, C.Q., Chi, R.A. & Hu, L.H. 2013. Solubilization of aluminum phosphate by specific Penicillium spp. Journal Central South University, 20: 2109–2114.

Zainal Abidin, Z.A., Abdul Malek, N., Zainuddin, Z. & Chowdhury, A.J.K. 2016. Selective isolation and antagonistic activity of actinomycetes from mangrove forest of Pahang, Malaysia. Frontiers in Life Science, 9(1): 24-31.

Zhang, G. & Dong, Y. 2022. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Frontiers in Microbiology, 13: 957444.

Published

30-09-2024

How to Cite

Nor Hasan, N. H., Abdullah, M. D. D. ., & Saidin, J. B. . (2024). Antimicrobial and Enzymatic Activities of Mangrove-associated Actinomycetes. Malaysian Applied Biology, 53(3), 219–228. https://doi.org/10.55230/mabjournal.v53i3.2864

Issue

Section

Research Articles