Stability of the Tyrosyl Radical in the Ribonucleotide Reductase Beta Subunit of Arcobacter bivalviorum

https://doi.org/10.55230/mabjournal.v53i3.3139

Authors

  • Abdulmajeed Alqurashi Department of Biology, College of Science, Taibah University, Medinah 42353, Saudi Arabia

Keywords:

Arcobacter bivalviorum, food safety, iron centre, ribonucleotide reductase, tyrosyl radical

Abstract

Arcobacter spp., such as Arcobacter bivalviorum (A. bivalviorum), are free-living organisms found in diverse environments and associated with animals. They are considered emerging enteropathogens and potential zoonotic agents. Ribonucleotide reductase (RNR) is the key enzyme that is used to convert ribonucleotides into deoxyribonucleoside triphosphates (dNTPs). This process utilises radical-based chemistry and is crucial for DNA biosynthesis and repair. There are three RNR classes, with class I RNR the most studied, present in A. bivalviorum, eukaryotes, and many prokaryotes. Class I RNRs are further divided into three subclasses: Ia, Ib, and Ic. Class Ib RNRs use a dimanganese-oxo centre, unlike class Ia RNRs, which use a diiron-oxo centre. A. bivalviorum possesses a class Ia enzyme that requires a diferric tyrosyl radical cofactor located within its beta (β) subunit. Indeed, both the efficiency and fidelity of DNA synthesis are influenced by the stability of the tyrosyl radical (Y•) in the RNR, which is a critical aspect of its enzymatic function. This study investigates the stability of the Y-radical (Y•) site within the RNR β subunit of A. bivalviorum and the nature of the neighbouring amino acid residues. To achieve these goals, we developed a model of the RNR β subunit of A. bivalviorum, using the RNR β subunit of Aquifex aeolicus as a reference template (7aik.1. A PDB). The results provide some important details about the radical site and its surrounding residues, highlighting the influence of the protein structure on the stability of the radical. These findings may guide the development of novel inhibitors targeting this enzyme in A. bivalviorum.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ando, N., Brignole, E.J., Zimanyi, C.M., Funk, M.A., Yokoyama, K., Asturias, F.J., Stubbe, J. & Drennan, C.L. 2011. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase. Proceedings of the National Academy of Sciences, 108(52): 21046-21051.

Aye, Y. & Stubbe, J. 2011. Clofarabine 5′-di and-triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proceedings of the National Academy of Sciences, 108(24): 9815-9820.

Brignole, E.J., Tsai, K.-L., Chittuluru, J., Li, H., Aye, Y., Penczek, P.A., Stubbe, J., Drennan, C.L. & Asturias, F. 2018. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. Elife, 7: e31502.

Brown, N., Canellakis, Z., Lundin, B., Reichard, P. & Thelander, L. 1969. Ribonucleoside diphosphate reductase. Purification of the two subunits, proteins B1 and B2. European journal of biochemistry, 9(4): 561-573.

Chakraborty, S., Mukherjee, P. & Sengupta, R. 2022. Ribonucleotide reductase: Implications of thiol S-nitrosylation and tyrosine nitration for different subunits. Nitric Oxide, 127: 26-43.

Chen, P.Y.-T., Funk, M.A., Brignole, E.J. & Drennan, C.L. 2018. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. Journal of Biological Chemistry, 293(26): 10404-10412.

Covès, J., Delon, B., Climent, I., Sjöberg, B.M. & Fontecave, M. 1995. Enzymic and chemical reduction of the iron center of the Escherichia coli ribonucleotide reductase protein R2: The role of the c-terminus. European journal of biochemistry, 233(1): 357-363.

Gerez, C., Elleingand, E., Kauppi, B., Eklund, H. & Fontecave, M. 1997. Reactivity of the tyrosyl radical of Escherichia coli ribonucleotide reductase: Control by the protein. European Journal of Biochemistry, 249(2): 401-407.

Greene, B.L., Kang, G., Cui, C., Bennati, M., Nocera, D.G., Drennan, C.L. & Stubbe, J. 2020. Ribonucleotide reductases: Structure, chemistry, and metabolism suggest new therapeutic targets. Annual Review of Biochemistry, 89: 45-75.

Hofer, A., Crona, M., Logan, D.T. & Sjöberg, B.-M. 2012. DNA building blocks: Keeping control of manufacture. Critical Reviews in Biochemistry and Molecular Biology, 47(1): 50-63.

Johansson, R., Jonna, V.R., Kumar, R., Nayeri, N., Lundin, D., Sjöberg, B.-M., Hofer, A. & Logan, D.T. 2016. Structural mechanism of allosteric activity regulation in a ribonucleotide reductase with double ATP cones. Structure, 24(6): 906-917.

Kelley, L.A. & Sternberg, M.J. 2009. Protein structure prediction on the Web: A case study using the Phyre server. Nature Protocols, 4(3): 363-371.

Levican, A., Collado, L., Aguilar, C., Yustes, C., Diéguez, A.L., Romalde, J.L. & Figueras, M.J. 2012. Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Systematic and Applied Microbiology, 35(3): 133-138.

Nguyen, R.C., Stagliano, C. & Liu, A. 2023. Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes. Current Opinion in Chemical Biology, 75: 102332.

Ormö, M., Regnström, K., Wang, Z., Que, L., Sahlin, M. & Sjöberg, B.-M. 1995. Residues important for radical stability in ribonucleotide reductase from Escherichia coli. Journal of Biological Chemistry, 270(12): 6570-6576.

Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A., Bileschi, M.L., Bork, P., Bridge, A. & Colwell, L. 2023. InterPro in 2022. Nucleic Acids Research, 51(D1): D418-D427.

Pedraz López, L. 2020. Regulation of Ribonucleotide Reduction in Facultative Anaerobic Pathogens and Its Influence in Bacterial Fitness, Virulence and Biofilm Formation (Ph.D) . University of Barcelona.

Reece, S.Y. & Seyedsayamdost, M.R. 2017. Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase. Essays in Biochemistry, 61(2): 281-292.

Regnström, K., Aberg, A., Ormö, M., Sahlin, M. & Sjöberg, B. 1994. The conserved serine 211 is essential for reduction of the dinuclear iron center in protein R2 of Escherichia coli ribonucleotide reductase. Journal of Biological Chemistry, 269(9): 6355-6361.

Rofougaran, R., Crona, M., Vodnala, M., Sjoberg, B.-M. & Hofer, A. 2008. Oligomerization status directs overall activity regulation of the Escherichia coli class Ia ribonucleotide reductase. Journal of Biological Chemistry, 283(51): 35310-35318.

Schmidt, T.T. 2019. Studies on DNA Replication Fidelity in Saccharomyces cerevisiae (Ph.D). Ruperto-Carola University of Heidelberg, Germany.

Torrents, E. 2014. Ribonucleotide reductases: Essential enzymes for bacterial life. Frontiers in Cellular and Infection Microbiology, 4: 52.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T. A.P., Rempfer, C. & Bordoli, L. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1): W296-W303.

Wesley, I.V. 1998. Arcobacter: An overview. Iowa State University Animal Industry Report.

Zimanyi, C.M., Chen, P.Y.-T., Kang, G., Funk, M.A. & Drennan, C.L. 2016. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. Elife, 5: e07141.

Published

30-09-2024

How to Cite

Alqurashi, A. (2024). Stability of the Tyrosyl Radical in the Ribonucleotide Reductase Beta Subunit of Arcobacter bivalviorum. Malaysian Applied Biology, 53(3), 117–124. https://doi.org/10.55230/mabjournal.v53i3.3139

Issue

Section

Research Articles