Genomic Analysis And Synergistic Biocontrol Potential of Bacillus thuringiensis MPOB Bt1 With Flubendiamide Against Oil Palm Bagworm, Metisa plana Walker (Lepidoptera: Psychidae)
Keywords:
Bacillus thuringiensis, MPOB Bt1, flubendiamide, genomic sequence, oil palm bagworm, synergistic effectAbstract
Bacillus thuringiensis MPOB Bt1 (MPOB Bt1) is a biological control agent used to suppress bagworm larvae in Malaysian oil palm plantations. Although MPOB Bt1 has been utilized in the field for biocontrol of oil palm bagworm larvae, its genetic basis for biocontrol capabilities and the combined effectiveness of MPOB Bt1 with flubendiamide have not been fully investigated. This study aimed to provide a genomic foundation for understanding the insecticidal properties of MPOB Bt1 by identifying specific genes that may be responsible for its biological activity. In addition, the study focused on evaluating the practical biological efficacy of MPOB Bt1, both alone and in combination with flubendiamide, against Metisa plana. The draft genome sequence of MPOB Bt1 was determined using Illumina HiSeq and PacBio platforms. The genome size was 6.9 Mb, with a GC content of 35.1%, and containing 5,558 coding DNA sequences, which included Cry9Ea, Cry1Ab, Cry1Ca, and Cry1Da of δ-endotoxin genes, 23 rRNAs, and 86 tRNAs. Bioassays showed that MPOB Bt1 exhibited toxicity to oil palm bagworm larvae, with an LC50 of 3.31 × 1010 spores/mL after 72 hr of treatment. The combination of MPOB Bt1 and flubendiamide showed a synergistic effect (LC50 of 1.19 × 109 spores/mL), with a ratio of experimentally observed efficacy to predicted efficacy greater than one. This study presents the draft genome sequence of MPOB Bt1 and identifies multiple insecticidal genes that potentially exhibit inhibitory effects against M. plana larvae. The toxicity and synergistic effect of MPOB Bt1 and Fbd suggest a potential strategy for controlling bagworm infestation in oil palm plantations. These findings provide a promising safer alternative to chemical insecticides for sustainable M. plana management in oil palm plantations.
Downloads
Metrics
References
Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267. DOI: https://doi.org/10.1093/jee/18.2.265a
Ahmad, M.N., Ali, S.R.A., Masri, M.M.M. & Wahid, M.B. 2009. Effect of Bacillus thuringiensis, TERAKIL-1® and TERACON-1® against oil palm polinator Elaeidobius kamerunicus, and beneficial insects associated with Cassia cobanensis. Journal of Oil Palm Research, 21: 667-674.
Ahmad, M.N., Ali, S.R.A., Masri, M.M.M. & Wahid, M.B. 2012. Effect of Bt products, Lepcon-1, Bafog-1 (S) and Ecobac-1 (EC), against the oil palm pollinating weevil, Elaeidobius kamerunicus, and beneficial insects associated with Cassia cobanensis. Journal of Oil Palm Research, 24(2): 1442-1447.
Ali, S.R.A. & Basri, M.W. 1997. A local Bacillus thuringiensis SRBT1 with potential for controlling Metisa plana (Wlk). Elaeis, 9(1): 34-45.
Ali, S.R.A. 2000. Mechanism of Action of Bacillus thuringiensis δ-endotoxins: Binding studies of δ-endotoxins to Brush Border Membrane Vesicle of Metisa plana (Walker). PhD Thesis. Universiti Kebangsaan Malaysia.
Ali, S.R.A., Basri, M.W. & Mahadi, M.N. 2005. IPM of bagworms and nettle caterpillars using Bacillus thuringiensis-towards understanding and increasing efficacy. In: Proceedings of the PIPOC 2005 International Palm Oil Congress – Agriculture Conference. Penerbit MPOB, Kuala Lumpur, pp. 1-25.
Al-Saeedi, H.M. & Al-Jassany, R.F. 2019. Isolation and diagnostic Bacillus thuringiensis tenebrionis pathogenesis for insects from date palm stem borer larva (Jebusaea Hammerschmidt: Coleoptera: Cearmbyicidae). Plant Archives, 19(2): 3331-3337.
Baranek, J., Banaszak, M., Kaznowski, A. & Lorent, D. 2021. A novel Bacillus thuringiensis Cry9Ea-like protein with high insecticidal activity towards Cydia pomonella larvae. Pest Management Science, 77(3): 1401-1408. DOI: https://doi.org/10.1002/ps.6157
BenFarhat-Touzri, D., Saadaoui, M., Abdelkefi-Mesrati, L., Saadaoui, I., Azzouz, H. & Tounsi, S. 2013. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. Journal of Invertebrate Pathology, 112(2), 142-145. DOI: https://doi.org/10.1016/j.jip.2012.11.007
Bergamasco, V.B., Mendes, D.R.P., Fernandes, O.A., Desidério, J.A. & Lemos, M.V.F. 2013. Bacillus thuringiensis CryIIa10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). Journal of Invertebrate Pathology, 112(2): 152-158. DOI: https://doi.org/10.1016/j.jip.2012.11.011
Bonis, M., Felten, A., Pairaud, S., Dijoux, A., Maladen, V., Mallet, L., Radomski, N., Duboisset, A., Arar, C., Sarda, X. & Vial, G. 2021. Comparative phenotypic, genotypic and genomic analyses of Bacillus thuringiensis associated with foodborne outbreaks in France. PloS One 16(2): p.e0246885. DOI: https://doi.org/10.1371/journal.pone.0246885
Carrière, Y., Fabrick, J.A. & Tabashnik, B.E. 2016. Can pyramids and seed mixtures delay resistance to Bt crops? Trends in biotechnology, 34(4): 291-302. DOI: https://doi.org/10.1016/j.tibtech.2015.12.011
Crickmore, N., Zeigler, D., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A. & Dean, D. 2016. Bacillus thuringiensis toxin nomenclature. Available on line http://www. btnomenclature.info (accessed 09.05.24)
Cumsille, A., Durán, R.E., Rodríguez-Delherbe, A., Saona-Urmeneta, V., Cámara, B., Seeger, M., Araya, M., Jara, N. & Buil-Aranda, C. 2023. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLoS Computational Biology, 19(4): e1010998. DOI: https://doi.org/10.1371/journal.pcbi.1010998
De Liguoro, M., Riga, A. & Fariselli, P. 2018. Synergistic toxicity of some sulfonamide mixtures on Daphnia magna. Ecotoxicology and Environmental Safety, 164: 84-91. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.011
Delnat, V., Tran, T.T., Janssens, L. & Stoks, R. 2019. Daily temperature variation magnifies the toxicity of a mixture consisting of a chemical pesticide and a biopesticide in a vector mosquito. Science of the Total Environment, 659: 33-40. DOI: https://doi.org/10.1016/j.scitotenv.2018.12.332
Department of Agriculture (DOA). 2019. Pesticide information system. URL http://www.portal.doa.gov.my/sismarp/ (accessed 09.06.24)
Eren, A.M., Esen, Ö.C., Quince, C., Vineis, J.H., Morrison, H.G., Sogin, M.L. & Delmont, T.O. 2015. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ, 3: e1319. DOI: https://doi.org/10.7717/peerj.1319
Estela, A., Escriche, B. & Ferré, J. 2004. Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 70(3): 1378-1384. DOI: https://doi.org/10.1128/AEM.70.3.1378-1384.2004
Fayad, N., Patiño-Navarrete, R., Kambris, Z., Antoun, M., Osta, M., Chopineau, J., Mahillon, J., El Chamy, L., Sanchis, V. & Kallassy Awad, M. 2019. Characterization and whole genome sequencing of AR23, a highly toxic Bacillus thuringiensis strain isolated from Lebanese soil. Current Microbiology, 76: 1503-1511. DOI: https://doi.org/10.1007/s00284-019-01775-9
Ferré, J. & Van Rie, J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47(1): 501-533. DOI: https://doi.org/10.1146/annurev.ento.47.091201.145234
Finney, D.J. 1971. A statistical treatment of the sigmoid response curve. In: Probit analysis. E. Tattersfield (Ed.). Cambridge University Press, London. pp. 63
Gisi, U. 1996. Synergistic interaction of fungicides in mixtures. Phytopathology, 86(11): 1273-1279.
Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., Marrone, P., Morin, L. & Stewart, A. 2012. Have biopesticides come of age? Trends in Biotechnology, 30(5): 250-258. DOI: https://doi.org/10.1016/j.tibtech.2012.01.003
Hamilton, J.T. & Attia, F.L. 1977. Effects of mixtures of Bacillus thuringiensis and pesticides on Plutella xylostella and the parasite Thyraeella collaris. Journal of Economic Èntomology, 70(1): 146–148. DOI: https://doi.org/10.1093/jee/70.1.146
Han, N., Qiang, Y., & Zhang, W. 2016. ANItools web: A web tool for fast genome comparison within multiple bacterial strains. Database. DOI: https://doi.org/10.1093/database/baw084
Hernández-Martínez, P., Ferré, J., & Escriche, B. 2008. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Journal of Invertebrate Pathology, 97(3): 245-250. DOI: https://doi.org/10.1016/j.jip.2007.11.001
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., Von Mering, C., & Bork, P. 2019. EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1): D309-D314. DOI: https://doi.org/10.1093/nar/gky1085
Hyatt, D., Chen, G.-L., Locascio, P.F., Land, M.L., Larimer, F.W., & Hauser, L.J. 2010. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11: 1-11. DOI: https://doi.org/10.1186/1471-2105-11-119
Ibargutxi, M.A., Estela, A., Ferré, J., & Caballero, P. 2006. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 72(1): 437-442. DOI: https://doi.org/10.1128/AEM.72.1.437-442.2006
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communication, 9(1): 5114. DOI: https://doi.org/10.1038/s41467-018-07641-9
James, C. 2006. Global status of commercialized biotech/GM crops. International Service for the Acquisition of Agri-biotech Applications Briefs, 35: 96.
Jeong, H., Lee, D.H., Ryu, C.M., Park, & S.H. 2016. Toward complete bacterial genome sequencing through the combined use of multiple next-generation sequencing platforms. Journal of Microbiology and Biotechnology, 26(1): 207-212. DOI: https://doi.org/10.4014/jmb.1507.07055
Jurat-Fuentes, J.L., & Crickmore, N. 2017. Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 142: 5-10. DOI: https://doi.org/10.1016/j.jip.2016.07.018
Kamarudin, N., Ali, S.R.A., Masri, M.M.M., Ahmad, M.N., Mat, C.A.H.C., & Kamarudin, N. 2017. Controlling Metisa plana Walker (Lepidoptera: Psychidae) outbreak using Bacillus thuringiensis at an oil palm plantation in Slim River Perak, Malaysia. Journal of Oil Palm Research, 29(1): 47-54. DOI: https://doi.org/10.21894/jopr.2017.2901.05
Kamarudin, N., Seman, I.A., & Masri, M.M.M. 2019. Prospects in sustainable control of oil palm pests and diseases through the enhancement of ecosystem services-the way forward. Journal of Oil Palm Research, 31(3): 381-393. DOI: https://doi.org/10.21894/jopr.2019.0030
Kato, K., Kiyonaka, S., Sawaguchi, Y., Tohnishi, M., Masaki, T., Yasokawa, N., Mizuno, Y., Mori, E., Inoue, K., Hamachi, I., & Takeshima, H. 2009. Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel. Biochemistry, 48(43): 10342-10352. DOI: https://doi.org/10.1021/bi900866s
Kok, C.C., Eng, O.K., Razak, A.R. & Arshad, A.M. 2011. Microstructure and life cycle of Metisa plana walker (Lepidoptera: Psychidae). Journal of Sustainable Science and Management, 6: 51-59.
Konecka, E., Kaznowski, A., Stachowiak, M. & Maciąg, M. 2018. Activity of spore-crystal mixtures of new Bacillus thuringiensis strains against Dendrolimus pini (Lepidoptera: Lasiocampidae) and Spodoptera exigua (Lepidoptera: Noctuidae). Folia Forestalia Polonica Series A, 60(2): 91-98. DOI: https://doi.org/10.2478/ffp-2018-0009
Kortenkamp, A. 2007. Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environmental Health Perspect, 115(Suppl 1): 98-105. DOI: https://doi.org/10.1289/ehp.9357
Legrand, E., Boulangé-Lecomte, C., Restoux, G., Trémolet, G., Duflot, A. & Forget-Leray, J. 2016. Individual and mixture acute toxicity of model pesticides chlordecone and pyriproxyfen in the estuarine copepod Eurytemora affinis. Environmental Science and Pollution Research, 24: 5976-5984. DOI: https://doi.org/10.1007/s11356-016-8294-5
Li, S., Xu, C., Du, G., Wang, G., Tu, X. & Zhang, Z. 2021. Synergy in efficacy of Artemisia sieversiana crude extract and Metarhizium anisopliae on resistant Oedaleus asiaticus. Frontiers in Physiology, 12: 642893. DOI: https://doi.org/10.3389/fphys.2021.642893
Liu, Y., Zhang, X., Xie, C. & Zhu, H. 2019. Synergistic test of Bt strain with high virulence of Hyphantria cunea. Journal of Anhui Agricultural University, 46(5): 870-875.
Malaysian Palm Oil Board. 2016. Standard operating procedures (SOP) guidelines for bagworm control. MPOB.
Masri, M.M.M., Ali, S.R.A., Ahmad, M.N., Kamarudin, N., Din, A.K. & Wahid, M.B. 2010. Integrated pest management (IPM) of bagworms in Southern Perak via aerial spraying of Bacillus thuringiensis. Oil Palm Bulletin, 63: 24-33.
Masri, M.M.M., Maidin, M.S.T. & Ariff, A.B. 2021. Impact of single and two-phase dissolved oxygen tension control on Bacillus thuringiensis cultivation and δ-endotoxin production. Malaysian Applied Biology, 50(1): 73-84. DOI: https://doi.org/10.55230/mabjournal.v50i1.14
Mathur, A., Feng, S., Hayward, J.A., Ngo, C., Fox, D., Atmosukarto, II., Price, J.D., Schauer, K., Märtlbauer, E., Robertson, A.A. & Burgio, G. 2019. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nature Microbiology, 4(2): 362-374. DOI: https://doi.org/10.1038/s41564-018-0318-0
Mesnage, R., Teixeira, M., Mandrioli, D., Falcioni, L., Ibragim, M., Ducarmon, Q.R., Zwittink, R.D., Amiel, C., Panoff, J.M., Bourne, E. & Savage, E. 2021. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Communications Biology, 4(1): 1-14. DOI: https://doi.org/10.1038/s42003-021-01990-w
Naveenarani, M., Suresha, G.S., Srikanth, J., Hari, K., Sankaranarayanan, C., Mahesh, P., Nirmala, R., Swathik, C.P., Crickmore, N., Ram, B. & Appunu, C. 2022. Whole genome analysis and functional characterization of a novel Bacillus thuringiensis (Bt 62) isolate against sugarcane white grub Holotrichia serrata (F). Genomics, 114(1): 185-195. DOI: https://doi.org/10.1016/j.ygeno.2021.12.012
Ortiz, A. & Sansinenea, E. 2022. Bacillus thuringiensis based biopesticides for integrated crop management. In: Biopesticides. A. Rakshit, V.S. Meena, P.C. Abhilash, B.K. Sarma, H.B. Singh, L. Fraceto, M. Parihar, A.K. Singh. Woodhead Publishing. pp. 1-6. DOI: https://doi.org/10.1016/B978-0-12-823355-9.00015-8
Peona, V., Blom, M.P., Xu, L., Burri, R., Sullivan, S., Bunikis, I., Liachko, I., Haryoko, T., Jønsson, K.A., Zhou, Q. & Irestedt, M. 2021. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Molecular Ecology Resources, 21(1): 263-286. DOI: https://doi.org/10.1111/1755-0998.13252
Plata-Rueda, A., Quintero, H.A., Serrão, J.E. & Martínez, L.C. 2020. Insecticidal activity of Bacillus thuringiensis strains on the nettle caterpillar, Euprosterna elaeasa (Lepidoptera: Limacodidae). Insects, 11(5): 310. DOI: https://doi.org/10.3390/insects11050310
Polenogova, O.V., Noskov, Y.A., Yaroslavtseva, O.N., Kryukova, N.A., Alikina, T., Klementeva, T.N., Andrejeva, J., Khodyrev, V.P., Kabilov, M.R., Kryukov, V.Y., & Glupov, V.V. 2021. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of Enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3): e0248704. DOI: https://doi.org/10.1371/journal.pone.0248704
Priwiratama, H., Rozziansha, T.A.P. & Prasetyo, A.E. 2018. Efektivitas flubendiamida dalam pengendalian ulat api Setothosea asigna Van Eecke, ulat kantung Metisa plana Walker, dan penggerek tandan Tirathaba rufivena Walker serta pengaruhnya terhadap aktivitas kumbang penyerbuk Elaeidobius kamerunicus Faust. Effekti [The effectiveness of flubendiamide in controlling the Setothosea asigna Van Eecke fire caterpillar, the Metisa plana Walker bagworm, and the Tirathaba rufivena Walker bunch moth, as well as its impact on the activity of the pollinating weevil Elaeidobius kamerunicus Faust]. Jurnal Penelitian Kelapa Sawit, 26(3): 129-140. DOI: https://doi.org/10.22302/iopri.jur.jpks.v26i3.63
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. 2020. Using SPAdes de novo assembler. Current Protocols in Bioinformatics, 70(1): e102. DOI: https://doi.org/10.1002/cpbi.102
Rajendran, S. 2020. Insect pest management in stored products. Outlooks on Pest Management, 31(1): 24-35. DOI: https://doi.org/10.1564/v31_feb_05
Rizvi, S.A.H., Ling, S., Tian, F., Xie, F. & Zeng, X. 2018. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Industrial Crops and Products, 121: 468-475. DOI: https://doi.org/10.1016/j.indcrop.2018.05.031
Roush, R.T. 1998. Two-toxin strategies for management of insecticidal transgenic crops: Can pyramiding succeed where pesticide mixtures have not? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1376): 1777. DOI: https://doi.org/10.1098/rstb.1998.0330
Sabbahi, R., Hock, V., Azzaoui, K., Saoiabim, S. & Hammouti, B. 2022. A global perspective of entomopathogens as microbial biocontrol agents of insect pests. Journal of Agriculture and Food Research, 10: 100376. DOI: https://doi.org/10.1016/j.jafr.2022.100376
Samada, L.H. & Tambunan, U.S.F. 2020. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Journal of Biological Sciences, 20(2): 66-76. DOI: https://doi.org/10.3844/ojbsci.2020.66.76
Sayed, A.M. & Behle, R.W. 2017. Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Science and Technology, 27(4): 461-474. DOI: https://doi.org/10.1080/09583157.2017.1303662
Schäfer, L., Volk, F., Kleespies, R.G., Jehle, J.A. & Wennmann, J.T. 2023. Elucidating the genomic history of commercially used Bacillus thuringiensis subsp. tenebrionis strain NB176. Frontiers in Cellular and Infection Microbiology, 13: 1129177. DOI: https://doi.org/10.3389/fcimb.2023.1129177
Sedlazeck, F.J., Lee, H., Darby, C.A. & Schatz, M. 2018. Piercing the dark matter: Bioinformatics of long-range sequencing and mapping. Nature Review Genetics, 19(6): 329-346. DOI: https://doi.org/10.1038/s41576-018-0003-4
Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14): 2068-2069. DOI: https://doi.org/10.1093/bioinformatics/btu153
Shabbir, M.Z., He, L., Shu, C., Yin, F., Zhang, J. & Li, Z.Y. 2021. Assessing the single and combined toxicity of chlorantraniliprole and Bacillus thuringiensis (GO33A) against four selected strains of Plutella xylostella (Lepidoptera: Plutellidae), and a gene expression analysis. Toxins, 13(3): 227. DOI: https://doi.org/10.3390/toxins13030227
Stemele, M. 2017. Comparative effects of a selective insecticide, Bacillus thuringiensis var. kurstaki and the broad-spectrum insecticide cypermethrin on diamondback moth and its parasitoid Cotesia vestalis (Hymenoptera; Braconidae). Crop Protection, 101: 35-42. DOI: https://doi.org/10.1016/j.cropro.2017.07.015
Sulaiman, M.N. & Talip, M.S.A. 2021. Sustainable control of bagworm (Lepidoptera: Psychidae) in oil palm plantation: a review paper. International Journal of Agriculture, 11(1988): 47-55.
Tabashnik, B.E. 1994. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 39(1): 79. DOI: https://doi.org/10.1146/annurev.ento.39.1.47
Wahid, M.B., Ali, S.R.A. & Kamarudin, N. 1994. Status on the use of Bacillus thuringiensis in the control of a number of oil palm pests. Elaeis, 6: 82-101.
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K. & Earl, A.M. 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11): e112963. DOI: https://doi.org/10.1371/journal.pone.0112963
Weissensteiner, M.H. & Suh, A. 2019. Repetitive DNA: The dark matter of avian genomics. In: Avian Genomics In Ecology And Evolution: From The Lab Into The Wild. R.H.S. Kraus (Ed.). Springer International Publishing. pp. 93-150. DOI: https://doi.org/10.1007/978-3-030-16477-5_5
Wick, R.R., Judd, L.M., Gorrie, C.L. & Holt, K.E. 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6): e1005595. DOI: https://doi.org/10.1371/journal.pcbi.1005595
Wood, B.J. & Kamarudin, K.A. 2019. A review of developments in integrated pest management (IPM) of bagworm (Lepidoptera: Psychidae) infestation in oil palms in Malaysia. Journal of Oil Palm Research, 31(4): 529-539. DOI: https://doi.org/10.21894/jopr.2019.0047
Wood, D.E., Lu, J. & Langmead, B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biology, 20: 1-13. DOI: https://doi.org/10.1186/s13059-019-1891-0
Wu, L.H., Chen, Y.Z., Hsieh, F.C., Lai, C.T. & Hsieh, C. 2022. Combined effect of Photorhabdus luminescens and Bacillus thuringiensis subsp. aizawai on Plutella xylostella. Applied Microbiology and Biotechnology, 106(8): 2917-2926. DOI: https://doi.org/10.1007/s00253-022-11905-2
Ye, W., Zhu, L., Liu, Y., Crickmore, N., Peng, D., Ruan, L. & Sun, M. 2012. Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Applied and Environmental Microbiology, 78(14): 4795-4801. DOI: https://doi.org/10.1128/AEM.00340-12
Zainuddin, N., Maidin, M.S.T., Kamarudin, N., Napiah, N.R.A.M.A., Keni, M.F. & Masri, M.M.M. 2023. De novo transcriptome analysis of bagworm Metisa plana from highly infested oil palm estate in Perak revealed detoxification genes and potential insecticide targets. Journal of Asia Pacific Entomology, 26(1): 102039. DOI: https://doi.org/10.1016/j.aspen.2023.102039
Zhang, Z., Li, K., Xu, W., Liang, N., Chu, D. & Guo, L. 2021. Characterization of the ryanodine receptor gene in Encarsia formosa (Gahan) and its expression profile in response to diamide insecticides. Pesticide Biochemistry and Physiology, 178: 104921. DOI: https://doi.org/10.1016/j.pestbp.2021.104921
Zhao, F., Li, Y., Huang, L., Gu, Y., Zhang, H., Zeng, D. & Tan, H. 2018. Individual and combined toxicity of atrazine, butachlor, halosulfuron-methyl and mesotrione on the microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 148: 969-975. DOI: https://doi.org/10.1016/j.ecoenv.2017.11.069
Zhao, R., Li, D., Wang, X., Li, Z., Yu, X. & Shentu, X. 2022. Synergistic and additive interactions of Zhongshengmycin to the chemical insecticide pymetrozine for controlling Nilaparvata lugens (Hemiptera: Delphacidae). Frontiers in Physiology, 13: 875610. DOI: https://doi.org/10.3389/fphys.2022.875610
Zhao, X., Silva, M.B.R.D., Van der Linden, I., Franco, B.D. & Uyttendaele, M. 2021. Behavior of the biological control agent Bacillus thuringiensis subsp. aizawai ABTS-1857 and Salmonella enterica on spinach plants and cut leaves. Frontiers in Microbiology, 12: 626029. DOI: https://doi.org/10.3389/fmicb.2021.626029
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission