Preliminary Exploration of Bioactive Compounds and Anthelmintic Activity in Diospyros kaki Fruits
Keywords:
Anthelminthic, Diospyros kaki fruits, extracts, Pheretima posthuma, qualitative chemical testAbstract
Helminths, or parasitic worms, pose a significant global health concern, affecting more than 25% of the world's population. In Malaysia, these infections are endemic, with varying prevalence rates among different populations, especially those impacting economically disadvantaged communities. The present study aimed to determine the secondary metabolites present and evaluate the anthelmintic activity of Diospyros kaki fruit extracts against earthworms. Hexane, ethyl acetate, ethanol, and water extracts of Diospyros kaki fruits were obtained via the cold maceration technique. Preliminary phytoconstituent screening of Diospyros kaki fruit extracts was performed to identify the phytoconstituents present in the extracts. The anthelminthic activities of different extracts (200 and 300 mg/mL) of Diospyros kaki fruits were evaluated separately in adult Malaysian earthworms (Pheretima posthuma). The durations of paralysis and death of individual worms were determined and compared with those of the standard drug albendazole at a concentration of 40 mg/mL. Ethyl acetate extract of D. kaki fruits at a concentration of 300 mg/mL resulted in better anthelmintic activity than the standard drug, albendazole, and other D. kaki fruit extracts. Qualitative phytochemical analysis revealed the presence of tannins, flavonoids, alkaloids, and volatile oils that might contribute to the anthelmintic activity of D. kaki fruits. Further research is intended to isolate anthelmintic bioactive compounds that could serve as new lead structures for developing alternative novel herbal anthelmintic agents.
Downloads
Metrics
References
Anuar, T.S., Salleh, F.M. & Moktar, N. 2014. Soil-transmitted helminth infections and associated risk factors in three Orang Asli tribes in Peninsular Malaysia. Scientific Reports, 4(1): 4101. DOI: https://doi.org/10.1038/srep04101
Das, S., Marndi, S., Biswal, S. K., Baro, T., Singh, R., Devi, R.S., Choudhury, R. & Kumar, S. 2021. Evaluation of antihelminthic activity of Bixa orellana. Asian Pacific Journal of Health Sciences, 8(4): 227-232. DOI: https://doi.org/10.21276/apjhs.2021.8.4.46
Ferreira da Vinha, A., Soares, M.O. & Machado, M. 2021. Recent advances regarding the phytochemical and therapeutic benefits of diospyros kaki fruit. Current Advances in Chemistry and Biochemistry, 5: 147-155. DOI: https://doi.org/10.9734/bpi/cacb/v5/8480D
Fissiha, W. & Kinde, M.Z. 2021. Anthelmintic resistance and its mechanism: A review. Infection and Drug Resistance, 14: 5403–5410. DOI: https://doi.org/10.2147/IDR.S332378
Ibrahim, M., Idoko, A.S., Ganiyu, A.I., Lawal, N., Abu, P., Ifebu, J., Michael, F., Na’allah, S. & Yusuf, F. 2023. Phytochemical analysis of hexane, chloroform, ethyl acetate, ethanol and aqueous extracts of Azanza garckeana Leaf. Sahel Journal of Life Sciences FUDMA, 1(1): 25-31. DOI: https://doi.org/10.33003/sajols-2023-0101-003
Jourdan, P.M., Lamberton, P.H.L., Fenwick, A. & Addiss, D.G. 2018. Soil-transmitted helminth infections. Lancet, 391(10117): 252-265. DOI: https://doi.org/10.1016/S0140-6736(17)31930-X
Kancherla, N., Dhakshinamoothi, A., Chitra, K. & Komaram, R.B. 2019. Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica, 14(4): 350. DOI: https://doi.org/10.26574/maedica.2019.14.4.350
Lahare, R.P., Yadav, H.S., Bisen, Y.K. & Dashahre, A.K. 2021. Estimation of total phenol, flavonoid, tannin and alkaloid content in different extracts of Catharanthus roseus from Durg district, Chhattisgarh, India. Scholars Bulletin, 7(1): 1-6. DOI: https://doi.org/10.36348/sb.2021.v07i01.001
Matheus, J.R.V., Andrade, C.J.d., Miyahira, R.F. & Fai, A.E.C. 2022. Persimmon (Diospyros kaki L.): Chemical properties, bioactive compounds and potential use in the development of new products–A review. Food Reviews International, 38(4): 384-401. DOI: https://doi.org/10.1080/87559129.2020.1733597
Motran, C.C., Silvane, L., Chiapello, L. S., Theumer, M.G., Ambrosio, L.F., Volpini, X., Celias, D.P. & Cervi, L. 2018. Helminth infections: Recognition and modulation of the immune response by innate immune cells. Frontiers in Immunology, 9: 664. DOI: https://doi.org/10.3389/fimmu.2018.00664
Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H. & Ullah, N. 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56: e17129. DOI: https://doi.org/10.1590/s2175-97902019000417129
Nixon, S.A., Welz, C., Woods, D.J., Costa-Junior, L., Zamanian, M. & Martin, R.J. 2020. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance, 14: 8-16. DOI: https://doi.org/10.1016/j.ijpddr.2020.07.001
Oikeh, E.I., Oviasogie, F.E. & Omoregie, E.S. 2020. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clinical Phytoscience, 6: 1-6. DOI: https://doi.org/10.1186/s40816-020-00193-w
Ojha, U., Pandeya, P.R., Lamichhane, G. & Jaishi, A. 2023. Diospyros spp.(Diospyros kaki Lf, Diospyros lotus L., Diospyros tomentosa Roxb.). In: Himalayan Fruits and Berries. T. Belwal, I. Bhatt and I. Devkota (Eds.). Academic Press. pp. 123-137. DOI: https://doi.org/10.1016/B978-0-323-85591-4.00032-5
Romero-Benavides, J.C., Ruano, A.L., Silva-Rivas, R., Castillo-Veintimilla, P., Vivanco-Jaramillo, S. & Bailon-Moscoso, N. 2017. Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. European Journal of Medicinal Chemistry, 129: 209-217. DOI: https://doi.org/10.1016/j.ejmech.2017.02.005
Sarker, R.K., Milon, M.M.M., Sultana, R., Kader, M.A., Parvin, S., Naz, T. & Parvez, G.M. 2023. Phytochemical and antioxidant activity of Diospyros kaki Leaves. Journal of Medicinal Plants, 11(1): 44-48. DOI: https://doi.org/10.22271/plants.2023.v11.i1a.1511
Sharma, I., Parashar, B., Vatsa, E., Chandel, S. & Sharma, S. 2016. Phytochemical screening and anthelmintic activity of leaves of Cedrus deodara (Roxb.). World Journal of Pharmacy and Pharmaceutical Sciences, 5(8): 1618-1628.
Spiegler, V., Liebau, E. & Hensel, A. 2017. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Natural Product Reports, 34(6): 627-643. DOI: https://doi.org/10.1039/C6NP00126B
Torgerson, P.R., Devleesschauwer, B., Praet, N., Speybroeck, N., Willingham, A.L., Kasuga, F., Rokni, M.B., Zhou, X.-N., Fèvre, E.M. & Sripa, B. 2015. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A data synthesis. PLoS Medicine, 12(12): e1001920. DOI: https://doi.org/10.1371/journal.pmed.1001920
Zajíčková, M., Nguyen, L. T., Skálová, L., Stuchlíková, L.R. & Matoušková, P. 2020. Anthelmintics in the future: Current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discovery Today, 25(2): 430-437. DOI: https://doi.org/10.1016/j.drudis.2019.12.007
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission