The Physiological Effect Of Zinc Oxide (ZnO) Nanopesticide On Aedes aegypti Larvae

https://doi.org/10.55230/mabjournal.v53i4.3057

Authors

  • Ting Chuan Hsieh School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Syahirah Zakaria School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Siti Khadijah Mohd Bakhori School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Shahrom Mahmud School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
  • Siti Nasuha Hamzah School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Keywords:

Mosquito, nanoparticles, pesticide, zinc oxide

Abstract

Aedes aegypti is responsible for transmitting various mosquito-borne diseases. Recently, there have been concerns about the negative impacts of the insecticides used in vector control including insecticide resistance development in the mosquito population. These circumstances lead to efforts to develop other strategies for controlling mosquito vectors. As technology in nanoparticles advances, zinc oxide (ZnO) nanoparticles have the potential as the alternative for chemical pesticides for mosquito larvicides due to their optical properties and widespread usage in different industries. The purpose of this study was to determine the toxicity of ZnO nanoparticles towards Ae. aegypti larvae and to examine the physiologies of Ae. aegypti mosquito larvae treated with ZnO nanoparticles at LC50 level. Toxicity bioassays were carried out to determine LC50 and LC90 values. The larvae surface and midgut treated with LC50 ZnO were examined using the Scanning Electron Microscope (FESEM) and Dispersive X-ray spectroscopy (EDX). The LC50 and LC90 concentrations of ZnO nanoparticles after 4 hr of direct UV exposure against Ae. aegypti larvae were 49.141 mg/L and 64.195 mg/L, respectively. After exposure to ZnO nanoparticles, Ae. aegypti larvae showed morphological abnormalities, including distorted and shrunk body parts as well as midgut rupture. Overall, the findings suggest that ZnO nanoparticles have the potential to replace chemical pesticides as a means of reducing the populations of Ae. aegypti mosquitoes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2): 265- 267. DOI: https://doi.org/10.1093/jee/18.2.265a

Abinaya, M., Vaseeharan, B., Divya, M., Sharmili, A., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., Khaled, J.M., & Benelli, G. 2018. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. Journal of Trace Elements in Medicine and Biology, 45: 93– 103. DOI: https://doi.org/10.1016/j.jtemb.2017.10.002

Akhir, M.A.M., Wajidi, M.F.F., Lavoué, S., Azzam, G., Jaafar, I.S., Awang Besar, N.A.U., & Ishak, I.H. 2022. Knockdown resistance (kdr) gene of Aedes aegypti in Malaysia with the discovery of a novel regional specific point mutation A1007G. Parasites & Vectors, 15: 1-15. DOI: https://doi.org/10.1186/s13071-022-05192-z

Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N.S., Kadaikunnan, S., & Benelli, G. 2017. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitology Research, 116: 1637-1651. DOI: https://doi.org/10.1007/s00436-017-5438-6

Bao, J., Shalish, I., Su, Z., Gurwitz, R., Capasso, F., Wang, X., & Ren, Z. 2011. Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Research Letters, 6: 1-7. DOI: https://doi.org/10.1186/1556-276X-6-404

Baruah, S., Mahmood, M.A., Myint, M.T.Z., Bora, T., & Dutta, J. 2010. Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein Journal of Nanotechnology, 1: 14-20. DOI: https://doi.org/10.3762/bjnano.1.3

Dhavan, P.P., & Jadhav, B.L. 2020. Eco-friendly approach to control dengue vector Aedes aegypti larvae with their enzyme modulation by Lumnitzera racemosa fabricated zinc oxide nanorods. SN Applied Sciences, 2: 1-15. DOI: https://doi.org/10.1007/s42452-020-2636-0

Eisen, L., Monaghan, A.J., Lozano-Fuentes, S., Steinhoff, D.F., Hayden, M.H., & Bieringer, P.E. 2014. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. Journal of Medical Entomology, 51(3): 496-516. DOI: https://doi.org/10.1603/ME13214

Fernandes, K.M., Neves, C.A., Serrão, J.E., & Martins, G.F. 2014. Aedes aegypti midgut remodeling during metamorphosis. Parasitology International, 63(3): 506-512. DOI: https://doi.org/10.1016/j.parint.2014.01.004

Finney, D.J. 1952. Probit analysis: a statistical treatment of the sigmoid response curve (2nd ed.). Cambridge University Press.

Hamdan, N.I., & Kilicman, A. 2019. Analysis of the fractional order dengue transmission model: A case study in Malaysia. Advances in Difference Equations, 2019: 1-13. DOI: https://doi.org/10.1186/s13662-019-1981-z

Kołodziejczak-Radzimska, A., & Jesionowski, T. 2014. Zinc Oxide—From Synthesis to Application: A Review. Materials, 7(4): 2833– 2881. DOI: https://doi.org/10.3390/ma7042833

Kraemer, M.U.G., Reiner, R.C., Brady, O.J., Messina, J.P., Gilbert, M., Pigott, D.M., Yi, D., Johnson, K., Earl, L., Marczak, L.B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T.A., Lai, S., Lu, X., Jones, P., Coelho, G.E., Carvalho, R. G., Bortel, W.V., Marsboom, C., Hendrickx, G., Schaffner, F., Moore, C.G., Nax, H.H., Bengtsson, L., Wetter, E., Tatem, A.J., Brownstein, J.S., Smith, D.L., Lambrechts, L., Cauchemez, S., Linard, C., Faria,N.R., Pybus, O.G., Scott, T.W., Liu, Q., Yu, H., Wint, G.R.W., Hay, S.I..,Golding, N. 2019. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4: 854–863. DOI: https://doi.org/10.1038/s41564-019-0376-y

Nagar, V., Singh, T., Tiwari, Y., Aseri, V., Pandit, P.P., Chopade, R.L., Pandey, K., Lodha, P., & Awasthi, G. 2022. ZnO Nanoparticles: Exposure, toxicity mechanism and assessment. Materials Today: Proceedings, 69: 56–63. DOI: https://doi.org/10.1016/j.matpr.2022.09.001

Ong, S.Q. 2016. Dengue vector control in Malaysia: A review for current and alternative strategies. Sains Malaysiana, 45(5): 777-785.

Rasli, R., Cheong, Y.L., Che Ibrahim, M.K., Farahininajua Fikri, S.F., Norzali, R.N., Nazarudin, N.A., Hamdan, N.F., Muhamed, K.A., Hafisool, A.A., Azmi, R.A., Ismail, H.A., Ali, R., Ab Hamid, N., Taib, M.Z., Omar, T., Wasi Ahmad, N., & Lee, H.L. 2021. Insecticide resistance in dengue vectors from hotspots in Selangor, Malaysia. PLOS Neglected Tropical Diseases, 15(3): 1-15. DOI: https://doi.org/10.1371/journal.pntd.0009205

Rezende-Teixeira, P., Dusi, R.G., Jimenez, P.C., Espindola, L.S., & Costa-Lotufo, L.V. 2022. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environmental Pollution, 300: 1- 20. DOI: https://doi.org/10.1016/j.envpol.2022.118983

Shahzad, K., & Manzoor, F. 2021. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug and Chemical Toxicology, 44(1): 1–11. DOI: https://doi.org/10.1080/01480545.2018.1525393

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., & Mohamad, D. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3): 219-242. DOI: https://doi.org/10.1007/s40820-015-0040-x

Thirumavalavan, M., Huang, K.L., & Lee, J.F. 2013. Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials, 6(9): 4198- 4212. DOI: https://doi.org/10.3390/ma6094198

Vincent, K. 2008. Probit analysis. San Francisco State University.

Vethasalam, R. 2024. First dengue vaccine launched in Malaysia [WWW Document]. The star. URL https://www.thestar.com.my/news/nation/2024/06/11/first-dengue-vaccine-launched-in-malaysia (accessed 19.6.24).

Vinotha, V., & Vaseeharan, B. 2023. Bio-fabricated zinc oxide and cry protein nanocomposites: Synthesis, characterization, potentiality against Zika, malaria and West Nile virus vector’s larvae and their impact on non-target organisms. International Journal of Biological Macromolecules, 224: 699–712. DOI: https://doi.org/10.1016/j.ijbiomac.2022.10.158

WHO. 2016. Monitoring and managing insecticide resistance in Aedes mosquito populations: interim guidance for entomologists. World Health Organization, Geneva. 11 pp.

WHO. 2024. Dengue and severe dengue [WWW Document]. World Health Organization. URL https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed 19.6.24).

Yazhiniprabha, M., Vaseeharan, B., Sonawane, A., & Behera, A. 2019. In vitro and in vivo toxicity assessment of phytofabricated ZnO nanoparticles showing bacteriostatic effect and larvicidal efficacy against Culex quinquefasciatus. Journal of Photochemistry and Photobiology B: Biology, 192: 158-169. DOI: https://doi.org/10.1016/j.jphotobiol.2019.01.014

Yusof, M.Z., Cherrie, J.W., Samsuddin, N., & Semple, S. 2022. Mosquito Control Workers in Malaysia: Is Lifetime Occupational Pesticide Exposure Associated with Poorer Neurobehavioral Performance? Annals of Work Exposures and Health, 66(8): 1044-1055. DOI: https://doi.org/10.1093/annweh/wxac038

Zhang, H., Chen, B., Jiang, H., Wang, C., Wang, H., & Wang, X. 2011. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials, 32(7): 1906-1914. DOI: https://doi.org/10.1016/j.biomaterials.2010.11.027

Published

27-10-2024

How to Cite

Hsieh, T. C. ., Zakaria, S. ., Bakhori, S. K. M. ., Mahmud, S. ., & Hamzah, S. N. . (2024). The Physiological Effect Of Zinc Oxide (ZnO) Nanopesticide On Aedes aegypti Larvae. Malaysian Applied Biology, 53(4), 159–166. https://doi.org/10.55230/mabjournal.v53i4.3057