Unravelling The Bioactivities of Acmella paniculata Extract-Mediated Green Deep Eutectic Solvent of Citric Acid Monohydrate and Glycerol

https://doi.org/10.55230/mabjournal.v53i4.3039

Authors

  • Rajina Shahmir Sivaraj Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Roziana Mohamed Hanaphi Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
  • Rizana Yusof Department of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia

Keywords:

Acmella paniculata, bioactivities, deep eutectic solvent, green solvent, plant extract

Abstract

Plants are important sources of underlying medicinal value properties. The extraction of bioactive compounds from botanical sources using green solvents has gained interest due to its environmental sustainability. This study highlighted the bioactivities potential of Acmella paniculata extract mediated by green deep eutectic solvent (DES) composed of the citric acid monohydrate and glycerol. Acmella paniculata, a local flowering shrub was selected due to its rich medicinal value compounds. The synergistic effect between plant’s bioactive compounds and DES is capable of enhancing bioactivity, making DES a promising plant solvent extractor candidate. The plant extracts were prepared in leaf and flower parts using the centrifugation method. The phytochemical screening for both extracts showed the presence of terpenoids and steroid constituents which have valuable bioactivity functions. The antibacterial activity assessed by disc diffusion assay exhibited higher susceptible bacterial response of E. coli, Salmonella enterica ser. Typhimurium and S. aureus against the flower extract compared to the leaf extract. The DPPH assay was conducted to assess free radical scavenging activity. The flower extract demonstrated radical scavenging activity (RSA) of 75%-77% while the leaf extract demonstrated 65%-69%. The flower extract results showed higher RSA emphasizing its potential as a natural antioxidant. The anti-inflammatory activity was determined by egg albumin denaturation assay, which showed a greater inhibition rate in flower extract than the leaf extract which was up to 95% and 89% respectively. Thus, both extracts possess an in vitro anti-inflammatory effect. Conclusively, flower extract exhibited better bioactivities value than leaf extract in a green DES. Hence, offering a new insight into its application as an effective alternative in natural product-based therapeutics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K. & Tambyrajah, V. 2003. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, (1): 70-71. DOI: https://doi.org/10.1039/b210714g

Adamu, E., Asfaw, Z., Demissew, S. & Baye, K. 2022. Antioxidant activity and anti-nutritional factors of selected wild edible plants collected from northeastern Ethiopia. Foods, 11(15): 2291. DOI: https://doi.org/10.3390/foods11152291

Akbar, N., Khan, N.A., Ibrahim, T., Khamis, M., Khan, A.S., Alharbi, A.M., Alfahemi, H. & Siddiqui, R. 2023. Antimicrobial activity of novel deep eutectic solvents. Scientia Pharmaceutical, 91(1): 9. DOI: https://doi.org/10.3390/scipharm91010009

Al Ragib, A., Karim, M.R., Afroz, S., Hossain, Md.T., Alam, Md.S., Sazib, S.M. & Islam, T. 2020. Antioxidant potential and brine shrimp lethality bioassay of Spilanthes acmella flower extract. Discovery Phytomedicine-Journal of Natural Products Research and Ethnopharmacology, 7(1): 1-6. DOI: https://doi.org/10.15562/phytomedicine.2020.111

Andriani, Y., Ramli, N.M., Syamsumir, D.F., Kassim, M.N.I., Jaafar, J., Aziz, N.A., Marlina, L., Musa, N.S. & Mohamad, H. 2019. Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arabian Journal of Chemistry, 12(8): 3555-3564. DOI: https://doi.org/10.1016/j.arabjc.2015.11.003

Basaiahgari, A., Panda, S. & Gardas, R.L. 2018. Effect of Ethylene, diethylene, and triethylene glycols and glycerol on the physicochemical properties and phase behavior of benzyltrimethyl and benzyltributylammonium chloride based deep eutectic solvents at 283.15-343.15 K. Journal of Chemical and Engineering Data, 63(7): 2613-2627. DOI: https://doi.org/10.1021/acs.jced.8b00213

Bedair, H.M., Samir, T.M. & Mansour, F.R. 2024. Antibacterial and antifungal activities of natural deep eutectic solvents. Applied Microbiology and Biotechnology, 108(1): 198. DOI: https://doi.org/10.1007/s00253-024-13044-2

Calvo-Flores, F.G. & Mingorance-Sánchez, C. 2021. Deep eutectic solvents and multicomponent reactions: two convergent items to green chemistry strategies. ChemistryOpen, 10(8): 815-829. DOI: https://doi.org/10.1002/open.202100137

Cao, J., Cao, J., Wang, H., Chen, L., Cao, F. & Su, E. 2020. Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. Journal of Molecular Liquids, 318: 113997. DOI: https://doi.org/10.1016/j.molliq.2020.113997

Cavalieri, S.J., Rankin, I.D., Harbeck, R.J., Sautter, R.L., McCarter, Y.S., Sharp, S.E., Ortez, J.H. & Spiegel, C.A. 2005. Manual of Antimicrobial Susceptibility Testing. American Society for Microbiology.

Charu, F., Tannukit, S., Rotpenpian, N. & Jitpukdeebodintra, S. 2022. Cytotoxicity and cell migration effect of crude spilanthes acmella ethanolic and water extract. Journal of International Dental and Medical Research, 15(2): 544-551.

Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Razis, A.F.A., Modu, B., Calina, D. & Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11: 1158198. DOI: https://doi.org/10.3389/fchem.2023.1158198

Dabetić, N., Todorović, V., Panić, M., Redovniković, I.R. & Šobajić, S. 2020. Impact of deep eutectic solvents on extraction of polyphenols from grape seeds and skin. Applied Sciences, 10(14): 4830. DOI: https://doi.org/10.3390/app10144830

Dai, Y., van Spronsen, J., Witkamp, G.J., Verpoorte, R. & Choi, Y.H. 2013. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766: 61-68. DOI: https://doi.org/10.1016/j.aca.2012.12.019

Dheyab, A.S., Bakar, M.F.A., AlOmar, M., Sabran, S.F., Hanafi, A.F.M. & Mohamad, A. 2021. Deep eutectic solvents (DESs) as green extraction media of beneficial bioactive phytochemicals. Separations, 8(10): 176. DOI: https://doi.org/10.3390/separations8100176

El Achkar, T., Fourmentin, S. & Greige-Gerges, H. 2019. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. Journal of Molecular Liquids, 288: 111028. DOI: https://doi.org/10.1016/j.molliq.2019.111028

Filip, D., Macocinschi, D., Balan-Porcarasu, M., Varganici, C.D., Dumitriu, R.P., Peptanariu, D., Tuchilus, C.G. & Zaltariov, M.F. 2022. Biocompatible self-assembled hydrogen-bonded gels based on natural deep eutectic solvents and hydroxypropyl cellulose with strong antimicrobial activity. Gels, 8(10): 666. DOI: https://doi.org/10.3390/gels8100666

Gabriele, F., Chiarini, M., Germani, R., Tiecco, M. & Spreti, N. 2019. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. Journal of Molecular Liquids, 291: 111301. DOI: https://doi.org/10.1016/j.molliq.2019.111301

Gairola, K., Gururani, S., Kumar, R., Prakash, O., Agrawal, S. & Dubey, S.K. 2022. Composition, antioxidant and anti-inflammatory activities of hexane and methanol extracts of Acmella uliginosa from Terai region of Uttarakhand. Brazilian Journal of Pharmaceutical Sciences, 58: 1-14. DOI: https://doi.org/10.1590/s2175-97902022e20353

Gajardo-Parra, N.F., Lubben, M.J., Winnert, J.M., Leiva, Á., Brennecke, J.F. & Canales, R.I. 2019. Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol. Journal of Chemical Thermodynamics, 133: 272-284. DOI: https://doi.org/10.1016/j.jct.2019.02.010

Herawati, D. & Pudjiastuti, P. 2021. Effect of different solvents on the phytochemical compounds of Sargassum sp. from Yogyakarta and East Nusa Tenggara. Journal of Physics: Conference Series, 1783: 012001. DOI: https://doi.org/10.1088/1742-6596/1783/1/012001

Hikmawanti, N.P.E., Ramadon, D., Jantan, I. & Mun'im, A. 2021. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants, 10(10): 2091. DOI: https://doi.org/10.3390/plants10102091

Jurić, T., Mićić, N., Potkonjak, A., Milanov, D., Dodić, J., Trivunović, Z. & Popović, B.M. 2021. The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents. Food Chemistry, 362: 130226. DOI: https://doi.org/10.1016/j.foodchem.2021.130226

Kelsey, N.A., Wilkins, H.M. & Linseman, D.A. 2010. Nutraceutical antioxidants as novel neuroprotective agents. Molecules, 15(11): 7792-7814. DOI: https://doi.org/10.3390/molecules15117792

Khataei, M.M., Yamini, Y., Nazaripour, A. & Karimi, M. 2018. Novel generation of deep eutectic solvent as an acceptor phase in three-phase hollow fiber liquid phase microextraction for extraction and preconcentration of steroidal hormones from biological fluids. Talanta, 178: 473-480. DOI: https://doi.org/10.1016/j.talanta.2017.09.068

Kholifah, E., Fitriani, V. & Shobah, A.N. 2024. Formulation and antioxidant activity analysis of jotang herb (Acmella paniculata) extract mask cream. Journal of Fundamental and Applied Pharmaceutical Science, 4(2): 70-80. DOI: https://doi.org/10.18196/jfaps.v4i2.19341

Koigerova, A., Gosteva, A., Samarov, A. & Tsvetov, N. 2023. Deep eutectic solvents based on carboxylic acids and glycerol or propylene glycol as green media for extraction of bioactive substances from Chamaenerion angustifolium (L.) Scop. Molecules, 28(19): 6978. DOI: https://doi.org/10.3390/molecules28196978

Kurumisawa, T., Kawai, K. & Shinozuka, Y. 2021. Verification of a simplified disk diffusion method for antimicrobial susceptibility testing of bovine mastitis isolates. Japanese Journal of Veterinary Research, 69(2): 135-143.

Lambros, M., Tran, T., Fei, Q., & Nicolaou, M. 2022. Citric acid: A multifunctional pharmaceutical excipient. Pharmaceutics, 14(5): 972. DOI: https://doi.org/10.3390/pharmaceutics14050972

Ling, J.K.U. & Hadinoto, K. 2022. Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. International Journal of Molecular Sciences, 23(6): 3381. DOI: https://doi.org/10.3390/ijms23063381

Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.N. & Pauli, G.F. 2018. natural deep eutectic solvents: properties, applications, and perspectives. Journal of Natural Products, 81(3): 679-690. DOI: https://doi.org/10.1021/acs.jnatprod.7b00945

Madhuranga, H.D.T. & Samarakoon, D.N.A.W. 2023. In vitro anti-inflammatory egg albumin denaturation assay: An enhanced approach. Journal of Natural and Ayurvedic Medicine, 7(3): 000411. DOI: https://doi.org/10.23880/jonam-16000411

Mirke, N.B., Shelke, P.S., Malavdkar, P.R. & Jagtap, P.N. 2020. In vitro protein denaturation inhibition assay of Eucalyptus globulus and Glycine max for potential anti-inflammatory activity. Innovations In Pharmaceuticals and Pharmacotherapy, 8(2): 28-31.

Mulyani, D.A. & Si, Y.M. 2021. Test of antioxidant and antibacterial activity of the extract of sambungnyawa (Gynura procumbens [Lour.] Merr.) against Streptococcus pyogenes bacteria. IOSR Journal of Pharmacy, 11(10): 1-11.

Nahr, F.K., Ghanbarzadeh, B., Hamishehkar, H. & Kafil, H.S. 2018. Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. Journal of Functional Foods, 40: 1-8. DOI: https://doi.org/10.1016/j.jff.2017.09.028

Oloya, B., Namukobe, J., Ssengooba, W., Afayoa, M. & Byamukama, R. 2022. Phytochemical screening, antimycobacterial activity and acute toxicity of crude extracts of selected medicinal plant species used locally in the treatment of tuberculosis in Uganda. Tropical Medicine and Health, 50(1): 16. DOI: https://doi.org/10.1186/s41182-022-00406-7

Panyadee, P. & Inta, A. 2022. Taxonomy and ethnobotany of Acmella (Asteraceae) in Thailand. Biodiversitas Journal of Biological Diversity, 23(4): 2177-2186. DOI: https://doi.org/10.13057/biodiv/d230453

Plants of the World Online. (n.d.). Acmella paniculata (Wall. ex DC.) R.K.Jansen. Royal Botanical Gardens. URL https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:914780-1#synonyms (accessed 4.27.2023).

Rahim, R.A., Jayusman, P.A., Muhammad, N., Mohamed, N., Lim, V., Ahmad, N. H., Mohamad, S., Abdul Hamid, Z.A., Ahmad, F., Mokhtar, N., Shuid, A.N. & Mohamed, I.N. 2021. Potential antioxidant and anti-inflammatory effects of Spilanthes acmella and its health beneficial effects: A review. International Journal of Environmental Research and Public Health, 18(7): 3532. DOI: https://doi.org/10.3390/ijerph18073532

Ramadan, K.M.A., El-Beltagi, H.S., Mohamed, H.I., Shalaby, T.A., Galal, A., Mansour, A.T., Aboul Fotouh, M.M. & Bendary, E.S.A. 2022. Antioxidant, anti-cancer activity and phytochemicals profiling of Kigelia pinnata fruits. Separations, 9(11): 379. DOI: https://doi.org/10.3390/separations9110379

Rani, A.S., Sana, H., Sulakshana, G., Puri, E.S. & Keerti, M. 2019. Spilanthes acmella - an important medicinal plant. International Journal of Minor Fruits, Medicinal and Aromatic Plants, 5(2): 15-26.

Raynie, D. 2019. Looking at the past to understand the future: Soxhlet extraction. LCGC North America, 37(8): 510-513.

Saraswat, M. & Sengwa, R.J. 2023. Multiphysics experimental approaches for insight into the hydrogen bonded structures of ethylene glycol and glycerol mixtures toward green solvent technology. Indian Journal of Pure and Applied Physics, 61(4): 217-238.

Savant, P.B. & Kareppa, M.S. 2022. A systematic and scientific review on the Acmella oleracea and its traditional medical and pharmacological uses. Asian Journal of Pharmaceutical Research, 12(1): 71-75. DOI: https://doi.org/10.52711/2231-5691.2022.00011

Serna-Vázquez, J., Ahmad, M.Z., Boczkaj, G. & Castro-Muñoz, R. 2021. Latest insights on novel deep eutectic solvents (DES) for sustainable extraction of phenolic compounds from natural sources. Molecules, 26(16): 5037. DOI: https://doi.org/10.3390/molecules26165037

Shafie, M.H., Yusof, R. & Gan, C.Y. 2019. Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. Journal of Molecular Liquids, 288: 111081. DOI: https://doi.org/10.1016/j.molliq.2019.111081

Shaikh, J.R. & Patil, M. 2020. Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2): 603-608. DOI: https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Sharmin, S., Jhuma, R.G., Islam, S. & Khatun, R. 2021. Anti-inflammatory and anti-arthritic potentials of Maesa montana Roots. Walailak Journal of Science and Technology, 18(16): 9564. DOI: https://doi.org/10.48048/wjst.2021.9564

Shikov, A.N., Kosman, V.M., Flissyuk, E.V., Smekhova, I.E., Elameen, A. & Pozharitskaya, O.N. 2020. Natural deep eutectic solvents for the extraction of phenyletanes and phenylpropanoids of Rhodiola rosea L. Molecules, 25(8): 1826. DOI: https://doi.org/10.3390/molecules25081826

Sivaraj, R.S., Hanaphi, R.M., Jafri, N.A., Mahadzir, M.N. & Yusof, R. 2023. The bioactivity potential of Acmella paniculata plant extract in antioxidant activity by two different extraction methods. Scientific Research Journal, 20: 1-16. DOI: https://doi.org/10.24191/srj.v20is.23254

Suthar, P., Kaushal, M., Vaidya, D., Thakur, M., Chauhan, P., Angmo, D., Kashyap, S. & Negi, N. 2023. Deep eutectic solvents (DES): An update on the applications in food sectors. Journal of Agriculture and Food Research, 14: 100678. DOI: https://doi.org/10.1016/j.jafr.2023.100678

Swebocki, T., Barras, A., Abderrahmani, A., Haddadi, K. & Boukherroub, R. 2023. Deep eutectic solvents comprising organic acids and their application in (Bio)Medicine. International Journal of Molecular Sciences, 24(10): 8492. DOI: https://doi.org/10.3390/ijms24108492

Tavares, T.D., Antunes, J.C., Padrão, J., Ribeiro, A.I., Zille, A., Amorim, M.T.P., Ferreira, F. & Felgueiras, H.P. 2020. Activity of Specialized biomolecules against gram-positive and gram-negative bacteria. Antibiotics, 9(6): 314. DOI: https://doi.org/10.3390/antibiotics9060314

Tebbi, S.O., Debbache-Benaida, N., Kadri, N., Kadi, R. & Zaidi, S. 2023. A novel strategy to improve the recovery of phenolic compounds from Pistacia lentiscus L. fruits using design-based statistical modeling for ultrasound-deep eutectic solvents extraction and the evaluation of their antioxidant potential. Sustainable Chemistry and Pharmacy, 31: 100933. DOI: https://doi.org/10.1016/j.scp.2022.100933

Thakur, S., Sagar, A. & Prakash, V. 2019. Studies on antibacterial and antioxidant activity of different extracts of Spilanthes acmella L. Plant Archives, 19(1): 1711-1717.

Wojeicchowski, J.P., Marques, C., Igarashi-Mafra, L., Coutinho, J.A.P. & Mafra, M.R. 2021. Extraction of phenolic compounds from rosemary using choline chloride-based deep eutectic solvents. Separation and Purification Technology, 258: 117975. DOI: https://doi.org/10.1016/j.seppur.2020.117975

Wu, L., Chen, Z., Li, S., Wang, L. & Zhang, J. 2021. Eco-friendly and high-efficient extraction of natural antioxidants from Polygonum aviculare leaves using tailor-made deep eutectic solvents as extractants. Separation and Purification Technology, 262: 118339. DOI: https://doi.org/10.1016/j.seppur.2021.118339

Wutsqa, Y.U., Suratman, S. & Sari, S.L.A. 2021. Detection of terpenoids and steroids in Lindsaea obtusa with thin layer chromatography. Asian Journal of Natural Product Biochemistry, 19(2): 66-69. DOI: https://doi.org/10.13057/biofar/f190204

Yesmin, S., Paul, A., Naz, T., Rahman, A.B.M.A., Akhter, S.F., Wahed, M.I.I., Emran, T.B. & Siddiqui, S.A. 2020. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinical Phytoscience, 6(1): 1-10. DOI: https://doi.org/10.1186/s40816-020-00207-7

Yusoff, M.H.M., Gan, C.Y. & Shafie, M.H. 2023. Characterization of citric acid monohydrate-glycerol based deep eutectic solvents which could be used as an extraction medium for hydrophilic bioactive components. Journal of Molecular Liquids, 389: 122879. DOI: https://doi.org/10.1016/j.molliq.2023.122879

Published

27-10-2024

How to Cite

Sivaraj, R. S., Hanaphi, R. M., & Yusof, R. (2024). Unravelling The Bioactivities of Acmella paniculata Extract-Mediated Green Deep Eutectic Solvent of Citric Acid Monohydrate and Glycerol. Malaysian Applied Biology, 53(4), 139–152. https://doi.org/10.55230/mabjournal.v53i4.3039