• AISHAH SUHAIMI School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • AMIZA MAT AMIN School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • NORIZAH MHD SARBON School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • MOHD EFFENDY ABD. WAHID School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • ZALIHA HARUN School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia


Blood cockle, angiotensin converting enzyme, peptide, hydrolysis


Blood cockle (Anadara granosa) is the most abundant and available bivalves in Malaysia. Blood cockles meat has high protein content and has potential to generate bioactive peptides. To date, no study has been reported on purification and identification of angiotensin I converting enzyme (ACE) inhibitory peptides from blood cockle meat. Thus, the objectives of this study were to purify and characterize ACE inhibitory peptide from blood cockle meat hydrolysate. ACE inhibitory peptides from blood cockle meat hydrolysate (CMH) were prepared by enzymatic protein hydrolysis using Protamex®. Crude CMH was characterized for its stability against gastrointestinal proteases, at varying pH (2–11) and temperature (4–90°C). Next, crude CMH was purified by ultrafiltration, ion exchange chromatography and reverse-phase chromatography and its amino acid sequence was identified. It was found that crude CMH was highly stable at low pH and temperature, and was resistant to gastrointestinal proteases (pepsin and trypsin). A three-step purification increased the inhibitory activity of CMH, reducing its IC50 from 0.35 mg/ml to 0.0094 mg/ml. The amino acid sequence of the purified peptide was determined as VNDLLSGSFKHFLY, with a molecular weight of 1621.88 Da. This study suggested the potential of ACE inhibitory peptide derived from cockle meat as a nutraceutical ingredient in functional food


Download data is not yet available.


Metrics Loading ...


Aishah, S., Amiza, M.A., Sarbon, N.M. & Effendy, W.A.M. 2017. Optimization of enzymatic protein hydrolysis conditions on Angiotensinconverting enzyme inhibitory (ACEI) activity from blood cockle (Anadara granosa) meat. International Food Research Journal, 24(2): 565-570.

Aluko, R.E. 2012. Functional Foods and Nutraceuticals. Springer Verlag. New York. p. 37-49. https://doi.org/10.1007/978-1-4614-3480-1_3 DOI: https://doi.org/10.1007/978-1-4614-3480-1_3

Amiza, M.A. & Masitah, M. 2012. Optimization of enzymatic hydrolysis of blood cockle (Anadara granosa) using Alcalase®. Borneo Science, 31: 1-10.

Chen, J., Wang, Y., Zhong, Q., Wu, Y. & Xia, W. 2012. Purification and characterisation of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides, 33: 52-58. https://doi.org/10.1016/j.peptides.2011.11.006 DOI: https://doi.org/10.1016/j.peptides.2011.11.006

Cheung, H.-S., Wang, F.-L., Ondetti, M.A., Sabo, E.F. & Cushman, D.W. 1980. Binding of peptide substrates and inhibitors of angiotensin converting enzyme. The Journal of Biological Chemistry, 255: 401-407. https://doi.org/10.1016/S0021-9258(19)86187-2 DOI: https://doi.org/10.1016/S0021-9258(19)86187-2

Cushman, D.W. & Cheung, H.S. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20(7): 1637-48. https://doi.org/10.1016/0006-2952(71)90292-9 DOI: https://doi.org/10.1016/0006-2952(71)90292-9

Department of Fisheries Malaysia (DOFM). 2015 Annual fisheries statistics book 2015. Department of Fisheries Malaysia. Putrajaya. Retrieved on 12.12.16, from Department of Fisheries Malaysia Official Portal: http://www.dof.gov.my/

Du, L., Fang, M., Wu, H., Xie, J., Wu, Y., Li, P. & Wei, D. 2013. A novel angiotensin I-converting enzyme inhibitory peptide from Phascolosoma esculenta water-soluble protein hydrolysate. Journal of Functional Foods, 5(1): 475-483. https://doi.org/10.1016/j.jff.2012.12.003 DOI: https://doi.org/10.1016/j.jff.2012.12.003

Escudero, E., Mora, L. & Toldrá, F. 2014. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry, 161: 305-311. https://doi.org/10.1016/j.foodchem.2014.03.117 DOI: https://doi.org/10.1016/j.foodchem.2014.03.117

Fahmi, A., Morimura, S., Guo, H.C., Shigematsu, T., Kida, K. & Uemura, Y. 2004. Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochemistry, 39: 1195-1200. https://doi.org/10.1016/S0032-9592(03)00223-1 DOI: https://doi.org/10.1016/S0032-9592(03)00223-1

García, M.C., Puchalska, P., Esteve, C. & Marina, M.L. 2013. Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta, 106: 328-49. https://doi.org/10.1016/j.talanta.2012.12.041 DOI: https://doi.org/10.1016/j.talanta.2012.12.041

Gu, R.-Z., Li, C.-Y., Liu, W.-Y., Yi, W.-X. & Cai, M.-Y. 2011. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International, 44(5): 15361540. https://doi.org/10.1016/j.foodres.2011.04.006 DOI: https://doi.org/10.1016/j.foodres.2011.04.006

Haslaniza, H., Maskat, M.Y., Wan Aida, W.M., Mamot, S. & Saadiah, I. 2013. Optimisation of enzymatic hydrolysis of cockle (Anadara granosa) meat wash water precipitate for the development of seafood flavour. International Food Research Journal, 20(6): 3053-3059.

He, S., Franco, C. & Zhang, W. 2013. Functions, applications and production of protein hydrolysates from fish processing. Food Research International, 50(1): 289-297. https://doi.org/10.1016/j.foodres.2012.10.031 DOI: https://doi.org/10.1016/j.foodres.2012.10.031

Himaya, S.W.A., Ngo, D.-H., Ryu, B. & Kim, S.-K. 2012. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatine attenuates angiotensin-I converting enzyme (ACE) activity and cellular oxidative stress. Food Chemistry, 132: 18721882. https://doi.org/10.1016/j.foodchem.2011.12.020 DOI: https://doi.org/10.1016/j.foodchem.2011.12.020

Hwang, J.S. 2010. Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice. Food Research International, 43: 902906. https://doi.org/10.1016/j.foodres.2009.12.012 DOI: https://doi.org/10.1016/j.foodres.2009.12.012

Ichimura, T., Hu, J., Aita, D.Q. & Maruyama, S. 2003. Angiotensin I-converting enzyme inhibitory activity and insulin secretion stimulative activity of fermented fish sauce. Journal of Bioscience and Bioengineering, 96: 496-499. https://doi.org/10.1016/S1389-1723(03)70138-8 DOI: https://doi.org/10.1016/S1389-1723(03)70138-8

Iwaniak, A., Minkiewicz, P. & Darewicz, M. 2014. Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Comprehensive Reviews in Food Science and Food Safety, 13: 114-134. https://doi.org/10.1111/1541-4337.12051 DOI: https://doi.org/10.1111/1541-4337.12051

Je, Y.J., Park, J.Y., Jung, W.K. & Kim, S.K. 2005. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chemistry, 90: 809814. https://doi.org/10.1016/j.foodchem.2004.05.028 DOI: https://doi.org/10.1016/j.foodchem.2004.05.028

Jung, W.K., Mendis, E., Je, J.-Y., Park, P.-J., Son, B.W. & Kim, H.C. 2006. Angiotensin Iconverting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 94(1): 26-32. https://doi.org/10.1016/j.foodchem.2004.09.048 DOI: https://doi.org/10.1016/j.foodchem.2004.09.048

Ketnawa, S. & Rawdkuen, S. 2013. Purification and characterisation of ACE inhibitory peptide from aquatic resources: a review. International Journal of Plant, Animal and Environmental Sciences, 3: 220-233.

Ko, S.C., Lee, J.K., Byun, H.G., Lee, S.C. & Jeon, Y.J. 2012. Purification and characterisation of angiotensin I-converting enzyme inhibitory peptide from enzymatic hydrolysates of Styela clava flesh tissue. Process Biochemistry, 47: 3440. https://doi.org/10.1016/j.procbio.2011.10.005 DOI: https://doi.org/10.1016/j.procbio.2011.10.005

Korhonen, H. & Pihlanto, A. 2003. Bioactive peptides: Novel applications for milk proteins. Applied Biotechnology, Food Science and Policy, 1: 133-144. https://doi.org/10.1016/S1043-4526(03)47004-6 DOI: https://doi.org/10.1016/S1043-4526(03)47004-6

Korhonen, H. & Pihlanto, A. 2006. Bioactive peptides: Production and functionality. International Dairy Journal, 16(9): 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012 DOI: https://doi.org/10.1016/j.idairyj.2005.10.012

Korhonen, H. 2009. Milk-derived bioactive peptides: From science to applications. Journal of Functional Food, 1: 177-187. https://doi.org/10.1016/j.jff.2009.01.007 DOI: https://doi.org/10.1016/j.jff.2009.01.007

La Fuente, M.A., Hemar, Y., Tamehana, M., Munro, P.A. & Singh, H. 2002. Process-induced changes in whey proteins during the manufacture of whey protein concentrates. International Dairy Journal, 12: 361-369. https://doi.org/10.1016/S0958-6946(02)00031-6 DOI: https://doi.org/10.1016/S0958-6946(02)00031-6

Langerholc, T., Maragkoudakis, P.A., Wollgast, J., Gradisnik, L. & Cencic, A. 2011. Novel and established intestinal cell linemodels-An indispensable tool in food science and nutrition. Trends in Food Science and Technology, 22: 11-20. https://doi.org/10.1016/j.tifs.2011.03.010 DOI: https://doi.org/10.1016/j.tifs.2011.03.010

Lee, S.-H., Qian, Z.-J. & Kim, S.-K. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 118: 96-102. https://doi.org/10.1016/j.foodchem.2009.04.086 DOI: https://doi.org/10.1016/j.foodchem.2009.04.086

Liaset, B., Lied, E. & Espe, M. 2000. Enzymatic hydrolysis of by-products from the fish-filleting industry; chemical characterisation and nutritional evaluation. Journal of the Science of Food and Agriculture, 80: 581-589. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<581::AID-JSFA578>3.0.CO;2-I DOI: https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<581::AID-JSFA578>3.0.CO;2-I

López-Fandiño, R., Otte, J. & van Camp, J. 2006. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal, 16: 1277-1293. https://doi.org/10.1016/j.idairyj.2006.06.004

Mann, D.G. & Chakinala, M. 2012. Heart Failure and Cor Pulmonale. Harrinson's Principle of Internal Medicine. Longo et al. (Eds.). Mc Graw-Hill Companies, Inc. USA. p. 1909.

Meisel, H. 1998. Overview on milk protein-derived peptides. International Dairy Journal, 8: 363373. https://doi.org/10.1016/S0958-6946(98)00059-4 DOI: https://doi.org/10.1016/S0958-6946(98)00059-4

Moskowitz, D.W. 2003. Is 'somatic' angiotensin Iconverting enzyme a mechanosensor? Diabetes Technology and Therapeutics, 4: 841-85. https://doi.org/10.1089/152091502321118847 DOI: https://doi.org/10.1089/152091502321118847

Nurnadia, A.A., Azrina, A. & Amin, I. 2011. Proximate composition and energetic value of selected marine fish. International Food Research Journal, 18: 137-148.

Ondetti, M.A. 1977. Design of specific inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents. Science, 196: 441-444. https://doi.org/10.1126/science.191908 DOI: https://doi.org/10.1126/science.191908

Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal, 16: 1277-1293. https://doi.org/10.1016/j.idairyj.2006.06.004 DOI: https://doi.org/10.1016/j.idairyj.2006.06.004

Pihlanto, L. 2000. Bioactive peptides derived from bovine whey proteins: Opioid and ACEinhibitory. Trends Food Science and Technology, 11: 347-356. https://doi.org/10.1016/S0924-2244(01)00003-6 DOI: https://doi.org/10.1016/S0924-2244(01)00003-6

Qian, Z.-J., Jung, W.-K., Lee, S.-H., Byun, H.-G. & Kim, S.-K. 2007. Antihypertensive effect of an angiotensin I-converting enzyme inhibitory peptide from bullfrog (Rana catesbeiana Shaw) muscle protein in spontaneously hypertensive rats. Process Biochemistry, 42(10): 1443-1448. https://doi.org/10.1016/j.procbio.2007.05.013 DOI: https://doi.org/10.1016/j.procbio.2007.05.013

Qu, W., Ma, H., Pan, Z., Luo, L., Wang, Z. & He, R. 2010. Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chemistry, 123(1): 14-20. https://doi.org/10.1016/j.foodchem.2010.03.091 DOI: https://doi.org/10.1016/j.foodchem.2010.03.091

Quirós, A., del Mar Contreras, M., Ramos, M., Amigo, L. & Recio, I. 2009. Stability to gastrointestinal enzymes and structure-activity relationship of beta-casein-peptides with antihypertensive properties. Peptides, 30(10): 1848-1853. https://doi.org/10.1016/j.peptides.2009.06.031 DOI: https://doi.org/10.1016/j.peptides.2009.06.031

Rho, S.J., Lee, J.-S., Chung, Y.Il, Kim, Y.-W. & Lee, H.G. 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochemistry, 44: 490-493. https://doi.org/10.1016/j.procbio.2008.12.017 DOI: https://doi.org/10.1016/j.procbio.2008.12.017

Sánchez-Rivera, L., Martínez-Maqueda, D., CruzHuerta, E., Miralles, B. & Recio, I. 2014. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Research International, 63: 170-181. https://doi.org/10.1016/j.foodres.2014.01.069 DOI: https://doi.org/10.1016/j.foodres.2014.01.069

Segura-Campos, M.R., Chel-Guerrero, L.A. & Betancur-Ancona, D.A. 2011. Purification of angiotensin I-converting enzyme inhibitory peptides from a cowpea (Vigna unguiculata) enzymatic hydrolysate. Process Biochemistry, 46: 864-872. https://doi.org/10.1016/j.procbio.2010.12.008 DOI: https://doi.org/10.1016/j.procbio.2010.12.008

Tavares, T., Contreras, M.D.M., Amorim, M., Pintado, M., Recio, I. & Malcata, F.X. 2011. Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes. Peptides, 32(5): 1013-9. https://doi.org/10.1016/j.peptides.2011.02.005 DOI: https://doi.org/10.1016/j.peptides.2011.02.005

Tsai, J.-S., Chen, J.-L. & Pan, B.S. 2008. ACEinhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria). Process Biochemistry, 43: 743-747. https://doi.org/10.1016/j.procbio.2008.02.019 DOI: https://doi.org/10.1016/j.procbio.2008.02.019

Tsai, J.S., Lin, T.C., Chen, J.L. & Pan, B.S. 2006. The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin I converting enzyme. Process Biochemistry, 41: 2276-2281. https://doi.org/10.1016/j.procbio.2006.05.023 DOI: https://doi.org/10.1016/j.procbio.2006.05.023

Wang, C., Song, W., Jiang, L. & Du, M. 2014. Purification and identification of an ACEinhibitory peptide from walnut protein hydrolysate. European Food Research and Technology, 239: 333-338. https://doi.org/10.1007/s00217-014-2227-7 DOI: https://doi.org/10.1007/s00217-014-2227-7

Wu, J. & Ding, X. 2002. Characterisation of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International, 35: 367375. https://doi.org/10.1016/S0963-9969(01)00131-4 DOI: https://doi.org/10.1016/S0963-9969(01)00131-4

Wu, Q., Feng, Q., Zhi, C. & Tao, P. 2015. Purification and characterisation of a novel angiotensin Iconverting enzyme inhibitory peptide derived from abalone (Haliotis discus hannai Ino) gonads. European Food Research and Technology, 240(1): 137-145. https://doi.org/10.1007/s00217-014-2315-8 DOI: https://doi.org/10.1007/s00217-014-2315-8



How to Cite

SUHAIMI, A. ., MAT AMIN, A. ., MHD SARBON, N. ., ABD. WAHID, M. E. ., & HARUN, Z. (2020). PURIFICATION AND CHARACTERISATION OF ANGIOTENSIN I CONVERTING ENZYME (ACE) INHIBITORY PEPTIDE FROM BLOOD COCKLE (Anadara granosa) MEAT HYDROLYSATE. Malaysian Applied Biology, 49(1), 13–21. https://doi.org/10.55230/mabjournal.v49i1.1649



Research Articles