THE ANTIMICROBIAL AND ANTIBIOFILM POTENTIAL OF SWEET BASIL ESSENTIAL OIL ON Streptococcus mutans AND Staphylococcus aureus

https://doi.org/10.55230/mabjournal.v51i4.30

Authors

  • NURHAYATI MOHAMAD ZAIN Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
  • NABILAH MOHD AMIN Faculty of Dentistry, University Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
  • FATIN ATHIRAHUSNA NORDIN Faculty of Dentistry, University Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
  • JUNAIDAH MAHMUD Faculty of Dentistry, University Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
  • INDAH MOHD AMIN Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.

Keywords:

Antibiofilm activity, Staphylococcus aureus, Streptococcus mutans, Sweet basil essential oil

Abstract

The antimicrobial and antibiofilm activities of sweet basil essential oil (SBEO) against oral microorganisms, Streptococcus
mutans (S. mutans) and Staphylococcus aureus (S. aureus) were determined in this study. The antimicrobial activities were
evaluated using the disk diffusion method (DDM), where Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC) were tested against both bacteria. Different formulations of SBEO (microemulsion, emulsion, water)
were tested for biofilm dispersion assay on 24 h of preformed biofilm. Commercial chlorhexidine (CHX) 0.12% w/v was
used as a positive control. The scanning electron microscope (SEM) was used to observe the changes on the treated surface.
The data were analyzed using SPSS Version 27.0. A Kruskal-Wallis test followed by a Post-hoc Mann-Whitney U test was
applied, and the level of significance was set at p<0.05. All formulations of SBEO showed antimicrobial activities against the
tested microorganisms. Exposure to 2.5% (v/v) microemulsion for two min exhibited 42.56% and 32.10% (p<0.001) of biofilm
dispersion for S. mutans and S. aureus, respectively. The SEM micrographs revealed the number of microorganisms on the
treated group surface reduced compared to the negative controls. SBEO exerts an antimicrobial and antibiofilm effect on S.
mutans and S. aureus. This finding suggests that the SBEO microemulsion has the potential to control planktonic S. mutans and
S. aureus and their biofilm formation in the oral environment

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aires, A., Barreto, A.S. & Semedo-Lemsaddek, T. 2021. Antimicrobial Effects of Essential Oils on Oral Microbiota Biofilms: The Toothbrush In Vitro Model. Antibiotics, 10(1): 21. DOI: https://doi.org/10.3390/antibiotics10010021

Astuti, P., Saifullah, T.N., Wulanjati, M.P., Yosephine, A.D. & Ardianti, D. 2016. Basil essential oil (Ocimum basilicum L.) activities on Streptococcus mutans growth, biofilm formation and degradation and its stability in micro-emulsion mouthwash formula. International Journal of Pharmaceutical and Clinical Research, 8(1): 26-32.

Bahl, R., Sandhu, S., Singh, K., Sahai, N. & Gupta, M. 2014. Odontogenic infections: Microbiology and management. Contemporary Clinical Dentistry, 5(3): 307-311. DOI: https://doi.org/10.4103/0976-237X.137921

Bassolé, I.H.N. & Juliani, H.R. 2012. Essential oils in combination and their antimicrobial properties. Molecules, 17(4): 3989-4006. DOI: https://doi.org/10.3390/molecules17043989

Beier, R.C., Byrd II, J.A., Kubena, L.F., Hume, M.E., McReynolds, J.L., Anderson, R.C. & Nisbet, D.J. 2014. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry. Poultry Science, 93(2): 267-272. DOI: https://doi.org/10.3382/ps.2013-03254

Brookes, Z.L., Bescos, R., Belfield, L.A., Ali, K. & Roberts, A. 2020. Current uses of chlorhexidine for management of oral disease: a narrative review. Journal of Dentistry, 103:103497. DOI: https://doi.org/10.1016/j.jdent.2020.103497

CLSI 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. CLSI document M02-A11. Wayne, PA: Clinical and Laboratory Standards Institute.

CLSI 2015. M100-S25: Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. CLSI, 35: 1-240.

Dias, I.J., Trajano, E.R.I.S., Castro, R.D., Ferreira, G.L.S., Medeiros, H.C.M. & Gomes, D.Q. C. 2017. Antifungal activity of linalool in cases of Candida spp. Isolated from individuals with oral candidiasis. Brazilian Journal of Biology, 78: 368-374. DOI: https://doi.org/10.1590/1519-6984.171054

Flemming, H.C. & Wingender, J. 2010. The biofilm matrix. Nature Reviews Microbiology, 8(9): 623-633. DOI: https://doi.org/10.1038/nrmicro2415

Garbacz, K., Kwapisz, E. & Wierzbowska, M. 2019. Denture stomatitis associated with small-colony variants of Staphylococcus aureus: a case report. BMC Oral Health, 19(1): 1-4. DOI: https://doi.org/10.1186/s12903-019-0910-6

Hossain, M.A., Kabir, M.J., Salehuddin, S.M., Rahman, S.M., Das, A.K., Singha, S.K., Alam, M.K. & Rahman, A., 2010. Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh. Pharmaceutical biology, 24(5): 504-511. DOI: https://doi.org/10.3109/13880200903190977

Hyldgaard, M., Mygind, T. & Meyer, R.L. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3: 12. DOI: https://doi.org/10.3389/fmicb.2012.00012

Jin, L., Liu, X., Bian, C., Sheng, J., Song, Y. & Zhu, Y. 2020. Fabrication linalool-functionalized hollow mesoporous silica spheres nanoparticles for efficiently enhance bactericidal activity. Chinese Chemical Letters, 31(8): 2137-2141. DOI: https://doi.org/10.1016/j.cclet.2019.12.020

Juliani Jr, H.R., Biurrun, F., Koroch, A.R., Oliva, M.M., Demo, M.S., Trippi, V.S. & Zygadlo, J.A. 2002. Chemical constituents and antimicrobial activity of the essential oil of Lantana xenica. Planta Medica, 68(08): 762-764. DOI: https://doi.org/10.1055/s-2002-33803

Kampf, G., 2016. Acquired resistance to chlorhexidine–is it time to establish an ‘antiseptic stewardship’ initiative. Journal of Hospital Infection, 94(3): 213-227. DOI: https://doi.org/10.1016/j.jhin.2016.08.018

Lamont, R.J., Koo, H. & Hajishengallis, G. 2018. The oral microbiota: dynamic communities and host interactions. Nature Reviews Microbiology, 16(12): 745-759. DOI: https://doi.org/10.1038/s41579-018-0089-x

Manconi, M., Petretto, G., D’hallewin, G., Escribano, E., Milia, E., Pinna, R., Palmieri, A., Firoznezhad, M., Peris, J.E., Usach, I, Fadda, A.M., Caddeo, C. & Manca, M.L. 2018. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids and Surfaces B: Biointerfaces, 171: 115-122. DOI: https://doi.org/10.1016/j.colsurfb.2018.07.021

Muráriková, A., Ťažký, A., Neugebauerová, J., Planková, A., Jampílek, J., Mučaji, P. & Mikuš, P. 2017. Characterization of essential oil composition in different basil species and pot cultures by a GC-MS method. Molecules, 22(7): 1221. DOI: https://doi.org/10.3390/molecules22071221

Oliveira, D., Borges, A. & Simões, M., 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins, 10(6): p.252. DOI: https://doi.org/10.3390/toxins10060252

Pemberton, M.N. & Gibson, J., 2012. Chlorhexidine and hypersensitivity reactions in dentistry. British Dental Journal, 213(11): 547-550. DOI: https://doi.org/10.1038/sj.bdj.2012.1086

Polonio, R.E., Mermel, L.A., Paquette, G.E. & Sperry, J.F. 2001. Eradication of biofilm-forming Staphylococcus epidermidis (RP62A) by a combination of sodium salicylate and vancomycin. Antimicrobial Agents and Chemotherapy, 45(11): 3262-3266. DOI: https://doi.org/10.1128/AAC.45.11.3262-3266.2001

Rahim, Z.H.A. & Thurairajah, N. 2011. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175. Journal of Applied Oral Science, 19(2): 137-146. DOI: https://doi.org/10.1590/S1678-77572011000200010

Rapposelli, E., Melito, S., Barmina, G.G., Foddai, M., Azara, E. & Scarpa, G.M. 2015. Relationship between soil and essential oil profiles in Salvia desoleana populations: preliminary results. Natural Product Communications, 10(9): 1934578X1501000932. DOI: https://doi.org/10.1177/1934578X1501000932

Salvi, G.E., Fürst, M.M., Lang, N.P. & Persson, G.R. 2008. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clinical Oral Implants Research, 19(3): 242-224. DOI: https://doi.org/10.1111/j.1600-0501.2007.01470.x

Scotti, F., Decani, S., Sardella, A., Iriti, M., Varoni, E.M. & Lodi, G. 2018. Anti-inflammatory and wound healing effects of an essential oils-based bioadhesive gel after oral mucosa biopsies: Preliminary results. Cellular and Molecular Biology, 64(8): 78-83. DOI: https://doi.org/10.14715/cmb/2018.64.8.12

Sheng, J. & Marquis, R.E. 2007. Malolactic fermentation by Streptococcus mutans. FEMS Microbiology Letters, 272(2): 196-201. DOI: https://doi.org/10.1111/j.1574-6968.2007.00744.x

Slot, D.E., Wiggelinkhuizen, L., Rosema, N.A.M. & Van der Weijden, G.A., 2012. The efficacy of manual toothbrushes following a brushing exercise: a systematic review. International Journal of Dental Hygiene, 10(3):187-197. DOI: https://doi.org/10.1111/j.1601-5037.2012.00557.x

Smith, A.J., Jackson, M.S. & Bagg, J. 2001. The ecology of Staphylococcus species in the oral cavity. Journal of Medical Microbiology, 50(11): 940-946. DOI: https://doi.org/10.1099/0022-1317-50-11-940

Wang, T.H., Hsia, S.M., Wu, C.H., Ko, S.Y., Chen, M.Y., Shih, Y.H., Shieh, T.M., Chuang, L.C. & Wu, C.Y. 2016. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS One, 11(9): e0163147. DOI: https://doi.org/10.1371/journal.pone.0163147

Wiwattanarattanabut, K., Choonharuangdej, S. & Srithavaj, T. 2017. In vitro anti-cariogenic plaque effects of essential oils extracted from culinary herbs. Journal of Clinical and Diagnostic Research, 11(9): DC30. DOI: https://doi.org/10.7860/JCDR/2017/28327.10668

Valizadeh, A., Shirzad, M., Esmaeili, F. & Amani, A. 2018. Increased antibacterial activity of cinnamon oil microemulsion comparison with cinnamon oil bulk and nanoemulsion. Nanomedicine Research Journal, 3(1): 37-43.

Van Strydonck, D.A., Slot, D.E., Van der Velden, U. & Van der Weijden, F., 2012. Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: a systematic review. Journal of Clinical Periodontology, 39(11): 1042-1055. DOI: https://doi.org/10.1111/j.1600-051X.2012.01883.x

Published

31-10-2022

How to Cite

MOHAMAD ZAIN, N., MOHD AMIN, N., NORDIN, F. A., MAHMUD, J., & MOHD AMIN, I. (2022). THE ANTIMICROBIAL AND ANTIBIOFILM POTENTIAL OF SWEET BASIL ESSENTIAL OIL ON Streptococcus mutans AND Staphylococcus aureus. Malaysian Applied Biology, 51(4), 213–220. https://doi.org/10.55230/mabjournal.v51i4.30