ANTIBACTERIAL AND ANTIBIOFILM ACTIVITIES OF Swietenia macrophylla King ETHANOLIC EXTRACT AGAINST FOODBORNE PATHOGENS

https://doi.org/10.55230/mabjournal.v51i4.10

Authors

  • CHE AMIRA IZZATI CHE MAN Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • WAN RAZARINAH WAN ABDUL RAZAK Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • MOHD FAKHARUL ZAMAN RAJA YAHYA Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Keywords:

Swietenia macrophylla, biofilm, gas chromatography-mass spectrometry, time-killing assay

Abstract

Swietenia macrophylla is known to possess several medicinal uses, however, its antibacterial and antibiofilm activities against foodborne pathogens remain not well investigated. The present work was performed to examine the phytochemical compounds, antibacterial and antibiofilm activities of S. macrophylla ethanolic extract (SMEE) against four foodborne pathogens namely, Salmonella typhimurium ATCC 14028, Escherichia coli ATCC 25922, Shigella sonnei ATCC 33862 and Pseudomonas aeruginosa ATCC 10145. The phytochemical analysis of SMEE was performed using gas chromatography-mass spectrometry while the antibacterial activities of SMEE were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. On the other hand, the antibiofilm and time-killing activities of SMME were evaluated using a crystal violet assay. The result demonstrated that SMEE contained major phytochemical compounds such as olean-12-ene (27.37%), resorcinol (16.45%), 24-noroleana-3,12-diene (13.4%), and germanicol (11.50%). The MIC values of SMEE ranged from 31.25 to 500 µg/mL, while all the MBC values were found to be greater than 1000 µg/mL. At the 12 h exposure to SMEE, all the biofilms were inhibited by 50% except E. coli. Biofilm inhibitory concentration (BIC50) values of SMEE ranged between 5.19 and 42.47 µg/mL. In conclusion, S. macrophylla is a promising source of natural antibacterial and antibiofilm agents to treat foodborne diseases.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adam, O.A.O., Abadi, R.S.M. & Ayoub, S.M.H. 2019. The effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. The Journal of Phytopharmacology, 8(5): 248-252. DOI: https://doi.org/10.31254/phyto.2019.8507

Afrouzan, H., Tahghighi, A., Zakeri, S. & Es-haghi, A. 2018. Chemical composition and antimicrobial activities of Iranian propolis. Iranian Biomedical Journal, 22(1): 50-65.

Agbo, E.C., Achi, O.K., Nwachukwu, E., Obeta, M.U., Obiora, E.O., Maduka, K.M., Oraekei, N.P. & Lote, N.I. 2020. Time kill kinetics study of commonly used disinfectants against biofilm forming Pseudomonas aeruginosa in Federal Medical Centre, Umuahia-Nigeria. American Journal of Biomedical Science & Research, 7(3): 262-268. DOI: https://doi.org/10.34297/AJBSR.2020.07.001155

Ahmed, I.M. 2008. Bioactivity of Neem (Azadirachta indica) callus extract [WWW Document]. URL http://inis.iaea.org/search/search.aspx?orig_q=RN:400 89514 (accessed 06.03.21).

Amaral, L. & Molnar, J. 2012. Inhibitors of efflux pumps of Gram-negative bacteria inhibit quorum sensing. Open Pharmacology Journal, 2: 2-15.

Aparna, V., Dileep, K.V., Mandal, P.K., Karthe, P., Sadasivan, C. & Haridas, M. 2012. Anti-inflammatory property of n-Hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology and Drug Design, 80: 434-439. DOI: https://doi.org/10.1111/j.1747-0285.2012.01418.x

Aryal, S. 2019. Pyruvate broth tests: Principles, procedures, uses and interpretation [WWW Document]. Microbiology Info. URL https://microbiologyinfo.com/pyruvate-broth-test/ (accessed 05.10.21).

Ayyappadhas, R., Jestin, C., Kenneth, N., Dayana, N. & Dhanalekshmi, U.M. 2012. Preliminary studies on antimicrobial activity of Swietenia macrophylla leaf extract. International Journal of Pharmaceutical Sciences Review and Research, 16(2): 1–4.

Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., Bonaventura, G.D., Hébraud, M., Jaglic, Z., Kačániová, M., Knøchel, S., Lourenço, A., Mergulhão, F., Meyer, R.L., Nychas, G., Simões, M., Tresse, O. & Sternberg. C. 2017. Critical review on biofilm methods. Critical Reviews in Microbiology, 43(3): 313–351. DOI: https://doi.org/10.1080/1040841X.2016.1208146

CDC. 2009a. Outbreak surveillance data. [WWW Document]. Centers for Disease Control and Prevention. URL http://www.cdc.gov/outbreaknet/surveillance_data.html (accessed 05.25.21).

Chimnoi, N., Reuk-Ngam, N., Chuysinuan, P., Khlaychan, P., Khunnawutmanotham, N., Chokchaichamnankit, D., Thamniyom, W., Klayraung, S., Mahidol, C. & Techasakul, S. (2018). Characterization of essential oil from Ocimum gratissimum leaves: antibacterial and mode of action against selected gastroenteritis pathogens. Microbial Pathogenesis, 118: 290–300. DOI: https://doi.org/10.1016/j.micpath.2018.03.041

CLSI. 2007. Performance standards for antimicrobial disc susceptibility test; approved standard 9th edition. Clinical and Laboratory Standard Institute (CLSI) document 3: M2-M9.

Das, A., Das, M.C., Sandhu, P., Tribedi, P. De, U.C. Akhter, Y. & Bhattacharjee, S. 2017. Antibiofilm activity of Parkia javanica against Pseudomonas aeruginosa: a study with fruit extract. RSC Advances, 7: 5497-5513. DOI: https://doi.org/10.1039/C6RA24603F

Debalke, D., Birhan, M., Kinubeh, A. & Yayeh, M. 2008. Assessments of antibacterial effects of aqueous-ethanolic extracts of Sida rhombifolia’s Aerial Part. Hindawi The Scientific World Journal, 2018: Article ID 8429809. DOI: https://doi.org/10.1155/2018/8429809

Dehpour, A.A., Yousefian, M., Jafary Kelarijani, S.A., Koshmoo, M., Mirzanegad, S., Mahdavi, V. & Javad Bayani, M.J. 2012. Antibacterial activity and composition of essential oils of flower Allium rotundum. Advances Environmental Biology, 6: 1020–1025.

Dewanjee, S., Mazumder, R., Kundu, M. & Mazumder, A. 2007. In vitro evaluation of antimicrobial activity of crude extract from plants Diopyros peregrina, Coccinia grandis and Swietenia macrophylla. Tropical Journal of Pharmaceutical Research, 6(3): 773-778. DOI: https://doi.org/10.4314/tjpr.v6i3.14658

Elmarzugi, N.A., Eid, A.M.M. & El-Enshasy, H.A. 2013. A review on the phytopharmacological effect of Swietenia macrophylla. International Journal of Pharmacy and Pharmaceutical Sciences, 5: 47-53.

Fatima, Z.M., Badiaa, L. & Abdelfattah, A. 2011. Antibacterial activity of the essential oils of Pistacia lentiscus used in Moroccan Folkloric Medicine. Natural Product Communications, 6(10): 1505-1506. DOI: https://doi.org/10.1177/1934578X1100601024

Goh, B.H. & Kadir, H.A. 2011. In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines. Journal Medicinal Plants Research, 5: 1395-1404.

Gopalan, H.K., Hanafiah, N.F.M., Ring, L.C., Tan, W.N., Wahidin, S., Hway, T.S. & Yenn, T.W. 2019. Chemical composition and antimicrobial efficiency of Swietenia macrophylla seed extract on clinical wound pathogens. Natural Product Sciences, 25(1): 38-43. DOI: https://doi.org/10.20307/nps.2019.25.1.38

Harjai, K., Bala, A., Gupta, R.K. & Sharma, R. 2013. Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa. Pathogens and Disease, 69: 62–65. DOI: https://doi.org/10.1111/2049-632X.12050

Husain, F.M, Ahmad, I., Al-thubiani, A.S., Abulreesh, H.H., Alhazza, I.M & Aqil, F. 2017. Leaf extracts of Mangifera indica L. inhibit quorum sensing – regulated production of virulence factors and biofilm in test bacteria. Frontiers in Microbiology, 8: 727. DOI: https://doi.org/10.3389/fmicb.2017.00727

Jaisankar, A.I., Girija, A.S.S., Gunasekaran, S. & Priyadharsini, J.V. 2020. Molecular characterisation of csgA gene among ESBL strains of A. baumannii and targeting with essential oil compounds from Azadirachta indica. Journal of King Saud University-Science, 32: 3380-3387. DOI: https://doi.org/10.1016/j.jksus.2020.09.025

Johari, N.A., Amran, S.S.D., Kamaruzzaman, A.N.A., Man, C.A.I.C. & Yahya, M.F.Z.R. 2020. Anti-biofilm potential and mode of action of Malaysian plant species: a review. Science Letters, 14: 34–46. DOI: https://doi.org/10.24191/sl.v14i2.9541

Jorgensen, J.H. & Ferraro, M.J. 2009. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clinical Infectious Diseases, 49: 1749–1755. DOI: https://doi.org/10.1086/647952

Kamaruzzaman, A.N.A., Mulok, T.E.T.Z. & Yahya, M.F.Z.R. 2022. Inhibitory action of topical antifungal creams against Candida albicans biofilm. Journal of Sustainability Science and Management, 17(2): 27-34. DOI: https://doi.org/10.46754/jssm.2022.02.003

Katerere, D.R., Gray, A.I., Nash, R.J. & Waigh, R.D. 2003. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry, 63(1): 81-88. DOI: https://doi.org/10.1016/S0031-9422(02)00726-4

Kuete, V., Dongfack, M.D., Mbaveng, A.T., Lallemand, M.C., Van-Dufat, H.T., Wansi, J.D., Seguin, E., Tillequin, F. & Wandji J. 2010. Antimicrobial activity of the methanolic extract and compounds from the stem bark of Drypetes tessmanniana. Chinese Journal of Integrative Medicine, 16(4): 337-343. DOI: https://doi.org/10.1007/s11655-010-0527-8

Kushwaha, P. Yadav, S.S., Singh, V. & Dwivedi, L.K. 2019. GC-MS analysis of bio-active compounds in methanolic extract of Ziziphus mauritiana fruit. International Journal of Pharmaceutical Sciences and Research, 10(6): 2911-2916.

Mamman, P.H. Mshelia, W.P., Susbatrus, S.C. & Sambo, K. W. 2013. Antibacterial effects of crude extract of A. indica against Escherichia coli, Salmonella spp and Staphylococcus aureus. International Journal of Medicine and Medical Sciences, 5(1): 14-18.

Mishra, R., Kushveer, J.S., Khan, M.I.K., Pagal, S., Meena, C.K. Murali, A., Dhayalan, A. & Sarma V.V. 2020. 2,4-Di-Tert-Butylphenol isolated from an endophytic fungus, Daldinia eschscholtzii, reduces virulence and quorum sensing in Pseudomonas aeruginosa. Frontiers in Microbiologyy, 11: 1668. DOI: https://doi.org/10.3389/fmicb.2020.01668

Ministry of Health. 2019. Health facts 2019: reference data for year 2018 [WWW Document]. URL www2.moh.gov.my (accessed 23.7.2022).

Mohammed, S.B., Azhari, N.H., Mashitah, Y.M., Abdurahman, N.H. & Mazza, A.S. 2014. Growth inhibitory effect on bacteria of Swietenia macrophylla King seeds and leaves crude alkaloid extracts. International Journal of Pharmaceutical Sciences and Research, 5(8): 3204-3208.

Namasivayam, S.K.R. & Roy, E.A. 2013. Antibiofilm effect of medicinal plant extracts against clinical isolate of biofilm of Escherichia coli. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2): 486-489.

Nirubama, K., Kanchana, G. & Rubalakshmi, G. 2014. Bioactive compounds in Andrographis echiodes (L.) Nees. leaves by GC-MS analysis. International Journal of Current Research in Bioscience and Plant Biology, 1(3): 92-97.

O'Brien, J., Wilson, I., Orton, T. & Pognan, F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Europian Journal of Biochemistry, 267(17): 5421-6. DOI: https://doi.org/10.1046/j.1432-1327.2000.01606.x

Okemo, P.O., Fabry, W. & Chhabra, S.C. 2001. The kill kinetics of Azadirachta indica A. JUSS. (meliaceae) extracts on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. African Journal of Science and Technology, 2(2): 113-118.

Padmavathi, A.R., Bakkiyaraj, D., Thajuddin, N. & Pandian, S.K. 2015. Effect of 2, 4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling, 31(7): 565–574. DOI: https://doi.org/10.1080/08927014.2015.1077383

Patra, J. & Baek, K.H. 2016. Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against foodborne pathogenic bacteria. Molecules, 21(3): 388. DOI: https://doi.org/10.3390/molecules21030388

Rukshana, M.S., Doss, A. & Kumari P.R.T.P. 2017. Phytochemical screening and GC-MS analysis of leaf extract of Pergularia daemia (Forssk) Chiov. Asian Journal of Plant Science and Research, 7(1): 9–15.

Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., & Griffin, P.M. 2011. Foodborne illness acquired in the United States–major pathogens. Emerging Infectious Diseases, 17: 7–15. DOI: https://doi.org/10.3201/eid1701.P11101

Sooriyakumar, P., Bolan, N., Kumar, M., Singh, L., Yu, Y., Li, Y., Weralupitiya, C., Vithanage, M., Ramanayaka, S., Sarkar, B., Wang, F., Gleeson, D. B., Zhang, D., Kirkham, M.B., Rinklebe, J. & Siddique, K.H.M. 2022. Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: A review, Journal of Hazardous Materials Advances, 6: 100077. . DOI: https://doi.org/10.1016/j.hazadv.2022.100077

Suliman, M.B., Nour, A.H., Yusoff, M.M., Nour, A.H., Kuppusamy, P., Yuvaraj, A.R. & Adam, M.S. 2013. Fatty acid composition and antibacterial activity of Swietenia macrophylla king seed oil. African Journal of Plant Sciences, 7(7): 300-303. DOI: https://doi.org/10.5897/AJPS2013.1039

Swati, P. & Richa, K. 2011. A review on antidiarrhoeal activity of herbals. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(3): 1357-1362.

Ta, C.A., Freundofter, M., Mah, T.F., Rojas, M.O., Garcia, M., Vindas, P.S., Poveda, L., Maschek, J.A., Baker, B.J., Adonizio, A.L., Downum, K., Durst, T. & Arnason, J.T. 2014. Inhibition of bacterial quorum sensing and biofilm formation by extracts of neotropical rainforest plants. Planta Medica, 80: 343–350. DOI: https://doi.org/10.1055/s-0033-1360337

Tyagi, P., Singh, M., Kumari, H., Kumari, A. & Mukhopadhyay, K. 2015. Bactericidal activity of Curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10(3): e0121313. DOI: https://doi.org/10.1371/journal.pone.0121313

Ushie, O.A. & Olumide, V.B. 2016. Phytochemical screening and antimicrobial activities of leaf extracts of Swietenia macrophylla. ChemSearch Journal, 7(2): 64-69.

Viszwapriya, D., Prithika, U., Deebika, S., Balamurugan, K. & Pandian, S.K. 2016. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiological Research, 191: 19-31. DOI: https://doi.org/10.1016/j.micres.2016.05.010

Yaacob, M.F., Murata, A., Nor, N.H.M., Jesse, F.F.A. & Yahya, M.F.Z.R. 2021. Biochemical composition, morphology antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University – Science, 33(1): 101225. DOI: https://doi.org/10.1016/j.jksus.2020.10.022

Yahya, M.F.Z.R., Hamid, U.M.A., Norfatimah, M.Y. & Kambol, R. 2014. In silico analysis of essential tricarboxylic acid cycle enzymes from biofilm-forming bacteria. Trends in Bioinformatics, 7(1): 19-26. DOI: https://doi.org/10.3923/tb.2014.19.26

Yahya, M.F.Z.R, Alias, Z. & Karsani, S.A. 2017. Substractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. Protein Journal, 36(24): 286-298. DOI: https://doi.org/10.1007/s10930-017-9719-9

Yahya, M.F.Z.R, Alias, Z. & Karsani, S.A. 2018. Antibiofilm activity and mode of action of DMSO alone and its combination with afatinib against Gram-negative pathogens. Folia Microbiologica, 63(1): 23-30. DOI: https://doi.org/10.1007/s12223-017-0532-9

Zawawi, W.M.A.W.M., Ibrahim, M.S.A., Rahmad, N., Hamid, U.M.A. & Yahya, M.F.Z.R. 2020. Proteomic analysis of Pseudomonas aeruginosa treated with Chromolaena odorata extracts. Malaysian Journal of Microbiology, 16(2): 124-133. DOI: https://doi.org/10.21161/mjm.190512

Published

31-10-2022

How to Cite

CHE MAN, C. A. I. ., WAN ABDUL RAZAK, W. R. ., & RAJA YAHYA, M. F. Z. . (2022). ANTIBACTERIAL AND ANTIBIOFILM ACTIVITIES OF Swietenia macrophylla King ETHANOLIC EXTRACT AGAINST FOODBORNE PATHOGENS. Malaysian Applied Biology, 51(4), 45–56. https://doi.org/10.55230/mabjournal.v51i4.10