HDL AND ITS SUBPOPULATION (HDL2 AND HDL3) PROMOTE CHOLESTEROL TRANSPORTERS EXPRESSION AND ATTENUATES INFLAMMATION IN 3T3-L1 MATURE ADIPOCYTES INDUCED BY TUMOR NECROSIS FACTOR ALPHA

https://doi.org/10.55230/mabjournal.v51i4.24

Authors

  • SUHAILA ABD MUID Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Sungai Buloh, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
  • REMEE AWANG JALIL Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh, Selangor, Malaysia
  • NOOR HANISA HARUN Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh, Selangor, Malaysia
  • HAPIZAH MOHD NAWAWI Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA Sungai Buloh, Selangor, Malaysia; Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
  • GABRIELE ANISAH RUTH FROEMMING Faculty of Medicine and Health Sciences, UNIMAS, Sarawak, Malaysia.

Keywords:

Adipokines, cholesterol transporters (ABCA1 and SR-B1),, HDL, HDL2, HDL3, Inflamed adipocytes

Abstract

Obesity activates inflammation causing dysfunction of adipocytes. Increasing high-density lipoprotein (HDL) levels in obesity may be beneficial in overcoming this effect. However, not much data is available on the effects of HDL and its subpopulations in inflamed adipocytes. The objective of this study was to investigate the effects of total HDL (tHDL) and the comparison between its subpopulations (HDL2 & HDL3) on protein and gene expression of cholesterol transporters, inflammation, and adipokines in TNF-α stimulated 3T3-L1 mature adipocytes. TNFα alone had lower adiponectin and higher protein and gene expression of IL-6 and NF-ĸβ (p65) compared to unstimulated adipocytes and these effects were attenuated by HDLs especially HDL3 (in most of the biomarkers). HDL and its subpopulation had higher cholesterol transporters expression in 3T3-L1 mature adipocytes induced by TNF-α compared to unstimulated cells. Increment of cholesterol transporters expression by HDL leads to reduce secretion of inflammatory markers [IL-6 & NF-kB (p65)] and visfatin and increases adiponectin secretion in the inflamed mature adipocytes. HDL exhibits beyond its reverse cholesterol transporter property by exhibiting anti-inflammatory effects thru the deactivation of NF-ĸβ (p65). This may contribute to reducing the progression of obesity-related complications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aprahamian, T.R. & Sam, F. 2011. Adiponectin in cardiovascular inflammation and obesity. International Journal of Inflammation, 2011: 376909. DOI: https://doi.org/10.4061/2011/376909

Arvind, A., Osganian, S.A., Cohen, D.E. & Corey, K.E. 2019. Lipid and lipoprotein metabolism in liver disease [WWW Document]. Endotext. URL https://www.endotext.org/MDText (accessed 15.10.22).

Briand, F., Naik, S.U., Fuki, I., Millar, J.S., Macphee, C., Walker, M., Billheimer, J., Rothblat, G. & Rader, D.J. 2009. Both the peroxisome proliferator-activated receptor (PPAR) delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal re-absorption of HDL-derived cholesterol. Clinical and Translational Science, 2(2): 127–133. DOI: https://doi.org/10.1111/j.1752-8062.2009.00098.x

Cai, L., Wang, Z., Meyer, J.M., Ji, A. & Van Der Westhuyzen, D.R. 2012. Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. Journal of Lipid Research, 53(8): 1472-1481. DOI: https://doi.org/10.1194/jlr.M023234

Camont, L., Chapman, M.J. & Kontush, A. 2011. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends in Molecular Medicine, 17(10): 594-603. DOI: https://doi.org/10.1016/j.molmed.2011.05.013

Das, U.N. 2001. Is obesity an inflammatory condition? Nutrition, 17(11–12): 953–966. DOI: https://doi.org/10.1016/S0899-9007(01)00672-4

Eren, E., Yilmaz, N. & Aydin, O. 2012. High density lipoprotein and it’s dysfunction. The Open Biochemistry Journal, 6: 78-93. DOI: https://doi.org/10.2174/1874091X01206010078

Gordon, S.M., Hofmann, S., Askew, D.S. & Davidson, W.S. 2011. High density lipoprotein: it’s not just about lipid transport anymore. Trends in Endocrinology & Metabolism, 22(1): 9-15. DOI: https://doi.org/10.1016/j.tem.2010.10.001

Greenberg, A.S., Coleman, R.A., Kraemer, F.B., McManaman, J.L., Obin, M.S., Puri, V., Yan, Q.W., Miyoshi, H. & Mashek, D.G. 2011. The role of lipid droplets in metabolic disease in rodents and humans. The Journal of Clinical Investigation, 121(6): 2102-2110. DOI: https://doi.org/10.1172/JCI46069

Guilherme, A., Virbasius, J.V., Puri, V. & Czech, M.P. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology, 9(5): 367-377. DOI: https://doi.org/10.1038/nrm2391

Guo, L., Song, Z., Li, M., Wu, Q., Wang, D., Feng, H., Bernard, P., Daugherty, A., Huang, B. & Li, X. A. 2009. Scavenger receptor BI protects against septic death through its role in modulating inflammatory response. Journal of Biological Chemistry, 284(30): 19826-19834. DOI: https://doi.org/10.1074/jbc.M109.020933

Gutierrez, D.A., Puglisi, M.J. & Hasty, A.H. 2009. Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Current Diabetes Reports, 9(1): 26–32. DOI: https://doi.org/10.1007/s11892-009-0006-9

Huang, J.P., Hsu, S.C., Meir, Y.J.J. Hsieh, P.S., Chang, C.C., Chen, K.H., Chen, J.K. & Hung, L.M. 2018. Role of dysfunctional adipocytes in cholesterol-induced nonobese metabolic syndrome. Journal of Molecular Endocrinology, 60(4): 309-323. DOI: https://doi.org/10.1530/JME-17-0194

Luquet, S., Gaudel, C., Holst, D., Lopez-Soriano, J., Jehl-Pietri, C., Fredenrich, A. & Grimaldi, P.A. 2005. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1740(2): 313-317. DOI: https://doi.org/10.1016/j.bbadis.2004.11.011

Marso, S.P., Mehta, S.K., Frutkin, A., House, J.A., McCrary, J.R. & Kulkarni, K.R. 2008. Low adiponectin levels are associated with atherogenic dyslipidemia and lipid-rich plaque in nondiabetic coronary arteries. Diabetes Care, 31(5): 989-994. DOI: https://doi.org/10.2337/dc07-2024

Martin, S.S., Khokhar, A.A., May, H.T., Kulkarni, K.R., Blaha, M.J., Joshi, P.H., Toth, P.P., Muhlestein, J.B., Anderson, J.L., Knight, S. & Li, Y. 2015. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the lipoprotein investigators collaborative. European Heart Journal, 36(1): 22-30. DOI: https://doi.org/10.1093/eurheartj/ehu264

McGillicuddy, F.C., Reilly, M.P. & Rader, D.J. 2011. Adipose modulation of high-density lipoprotein cholesterol implications for obesity, high-density lipoprotein metabolism, and cardiovascular disease. Circulation, 124(15): 1602-1605. DOI: https://doi.org/10.1161/CIRCULATIONAHA.111.058453

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Murphy, A.J. 2013. High density lipoprotein: assembly, structure, cargo, and functions. ISRN Physiology. DOI: https://doi.org/10.1155/2013/186365

Niemelä, S., Miettinen, S., Sarkanen, J.R., & Ashammakhi, N. 2008. Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. Topics in Tissue Engineering, 4(1): 26.

Oliver, W.R., Shenk, J.L., Snaith, M.R., Russell, C.S., Plunket, K.D., Bodkin, N.L. & Xu, H.E. 2001. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences, 98(9): 5306-5311. DOI: https://doi.org/10.1073/pnas.091021198

Olzmann, J.A. & Carvalho, P. 2019. Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20(3): 137-155. DOI: https://doi.org/10.1038/s41580-018-0085-z

Rizzatti, V., Boschi, F., Pedrotti, M., Zoico, E., Sbarbati, A. & Zamboni, M. 2013. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution. European Journal of Histochemistry, 57(3): 24. DOI: https://doi.org/10.4081/ejh.2013.e24

Ruiz Estrada, M.A., Swee Kheng, K. & Ating, R. 2019. The Evaluation of Obesity in Malaysia. SSRN Electron. DOI: https://doi.org/10.2139/ssrn.3455108

Saha, S., Graessler, J., Schwarz, P.E., Goettsch, C., Bornstein, S.R. & Kopprasch, S. 2012. Modified high-density lipoprotein modulates aldosterone release through scavenger receptors via extracellular signal-regulated kinase and janus kinase-dependent pathways. Molecular and Cellular Biochemistry, 366(1-2): 1-10. DOI: https://doi.org/10.1007/s11010-012-1274-2

Shuhei, N., Söderlund, S., Jauhiainen, M.& Taskinen, M.R. 2010. Effect of HDL composition and particle size on the resistance of HDL to the oxidation. Lipids in Health and Disease, 9(1): 104. DOI: https://doi.org/10.1186/1476-511X-9-104

Song, G., Wu, X., Zhang, P., Yu, Y., Yang, M., Jiao, P., Wang, N., Song, H., Wu, Y., Zhang, X. & Liu, H. 2016. High-density lipoprotein inhibits ox-LDL-induced adipokine secretion by upregulating SR-BI expression and suppressing ER Stress pathway. Scientific Reports, 6:30889. DOI: https://doi.org/10.1038/srep30889

Soumyarani, V.S. & Jayakumari, N. 2012. Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes–macrophages by enhanced production of ROS, TNF-α, MMP-9, and MMP-2. Molecular and Cellular Biochemistry, 366 (1-2): 277-285. DOI: https://doi.org/10.1007/s11010-012-1306-y

Sun, K., Kusminski, C.M. & Scherer, P.E. 2011. Adipose tissue remodeling and obesity. The Journal of Clinical Investigation, 121(6): 2094-2101. DOI: https://doi.org/10.1172/JCI45887

Superko, H.R., Pendyala, L., Williams, P.T., Momary, K.M., King III, S.B. & Garrett, B.C 2012. High-density lipoprotein subclasses and their relationship to cardiovascular disease. Journal of Clinical Lipid, 6(6): 496-523. DOI: https://doi.org/10.1016/j.jacl.2012.03.001

Verghese, P.B., Arrese, E.L., & Soulages, J.L. 2007. Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Molecular and Cellular Biochemistry, 302(1-2): 241-248. DOI: https://doi.org/10.1007/s11010-007-9447-0

Vrins, C.L., van der Velde, A.E., van den Oever, K., Levels, J.H.M., Huet, S., Oude Elferink, R.P.O., Kuipers, F. & Groen, A.K. 2009. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. Journal of Lipid Research, 50(10): 2046–2054. DOI: https://doi.org/10.1194/jlr.M800579-JLR200

Wang, Y., Wang, X., Guo, Y., Bian, Y., Bai, R. Liang, B. & Xiao, C. 2017. Effect of adiponectin on macrophage reverse cholesterol transport in adiponectin‑/‑mice and its mechanism. Experimental and Therapeutic Medicine, 13(6): 2757-2762. DOI: https://doi.org/10.3892/etm.2017.4321

Wellen, K.E. & Hotamisligil, G.S. 2003. Obesity-induced inflammatory changes in adipose tissue. The Journal of Clinical Investigation, 112(12): 1785-1788. DOI: https://doi.org/10.1172/JCI20514

Xu, S., Zhang, X. & Liu, P. 2018. Lipid droplet proteins and metabolic diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(5): 1968-1983. DOI: https://doi.org/10.1016/j.bbadis.2017.07.019

Xu, Y., Du, X., Turner, N., Brown, A.J. & Yang, H. 2019. Enhanced acyl-CoA: cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. Journal of Biological Chemistry, 294(50): 19306-19321. DOI: https://doi.org/10.1074/jbc.RA119.011160

Yin, K., Liao, D.F., & Tang, C.K. 2010. ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Molecular Medicine, 16(9): 438. DOI: https://doi.org/10.2119/molmed.2010.00004

Yoshikawa, M., Sakuma, N., Hibino, T., Sato, T., & Fujinami, T. 1997. HDL3 exerts more powerful anti-oxidative, protective effects against copper-catalyzed LDL oxidation than HDL2. Clinical Biochemistry, 30(3): 221-225. DOI: https://doi.org/10.1016/S0009-9120(97)00031-3

Zhang, Y., McGillicuddy, F.C., Hinkle, C.C., O’Neill, S., Glick, J.M., Rothblat, G. H. & Reilly, M.P. 2010. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation, 121(11): 1347. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.897330

Published

31-10-2022

How to Cite

ABD MUID, S., AWANG JALIL, R. ., HARUN, N. H. ., MOHD NAWAWI, H. ., & RUTH FROEMMING, G. A. . (2022). HDL AND ITS SUBPOPULATION (HDL2 AND HDL3) PROMOTE CHOLESTEROL TRANSPORTERS EXPRESSION AND ATTENUATES INFLAMMATION IN 3T3-L1 MATURE ADIPOCYTES INDUCED BY TUMOR NECROSIS FACTOR ALPHA. Malaysian Applied Biology, 51(4), 153–167. https://doi.org/10.55230/mabjournal.v51i4.24