Symbiodiniaceae Density Pattern in Relation To Colony Morphology of Scleractinian Corals in Pulau Tioman and Pulau Bidong, Malaysia

https://doi.org/10.55230/mabjournal.v52i2.2510

Authors

  • Muhammad Arif Samshuri Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0002-7623-6592
  • Che Din Mohd Safuan Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Nur Atiqah Maznan Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Siti Nurtahirah Jaafar Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0001-5857-8700
  • Zainudin Bachok Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0002-3221-3540

Keywords:

Symbioniaceae, scleractinian coral, symbiotic algae, coral growth form, South China Sea

Abstract

A healthy coral reef is linked to the mutualistic relationship between scleractinian coral and the symbiotic Symbiodiniacea (SD). However, there is limited research on SD in Malaysia, despite its important role in reef-building coral. In this study, the SD density of scleractinian corals from the family Acroporidae was evaluated to (i) examine the pattern of SD density and (ii) comprehend the regulation of the SD density by the host. The mean SD density ranged between 0.46 ± 0.01 × 106 cell cm-2 and 2.98 ± 1.17 × 106 cell cm-2. It is hypothetically proven that the SD density differed significantly between genera and morphological factors such as colony surface area (CSA) and dry weight coral tissue per unit colony surface area (DWCT/CSA) were significantly correlated with the SD density. The results show that the significant variation in SD density among coral genera can be influenced by coral growth forms and tissue biomass. There was a significant relationship between SD density and CSA as well as DWCT/CSA. Coral genera with a wider CSA and lower DWCT/CSA such as Anacropora and Acropora with branching, digitate and tabulate growth forms contained lower SD density than massive, laminar, and encrusting such as Montipora and Astreopora which hold more DWCT/CSA at lower CSA, resulting in higher SD density. The findings provide valuable information on SD density in different types of corals from the southern part of the South China Sea and reveal the coral host’s SD regulation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al-Hammady, M.A.M. 2013. The effect of zooxanthellae availability on the rates of skeletal growth in the Red Sea coral Acropora hemprichii. Egyptian Journal of Aquatic Research, 39(3): 177–183. DOI: https://doi.org/10.1016/j.ejar.2013.10.005

Baird, A.H., Bhagooli, R., Ralph, P.J. & Takahashi, S. 2009. Coral bleaching: the role of the host. Trends in Ecology & Evolution, 24(1): 16-20. DOI: https://doi.org/10.1016/j.tree.2008.09.005

Bray, J.R. & Curtis J.T. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 27: 325–349. DOI: https://doi.org/10.2307/1942268

Chelliah, A., Amar, H. Bin, Hyde, J., Yewdall, K., Steinberg, P.D. & Guest, J.R. 2015. First record of multi-species synchronous coral spawning from Malaysia. PeerJ, 3: e777. DOI: https://doi.org/10.7717/peerj.777

Cunning, R. & Baker, A.C. 2013. Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3(3): 259-262. DOI: https://doi.org/10.1038/nclimate1711

Davies, P.S. 1984. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs, 2(4): 181-186.

De’ath, G., Fabricius, K.E., Sweatman, H. & Puotinen, M. 2012. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences, 109(44):17995-17999. DOI: https://doi.org/10.1073/pnas.1208909109

Dias, M., Ferreira, A., Gouveia, R., Madeira, C., Jogee, N., Cabral, H., Diniz, M. & Vinagre, C. 2019. Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress. Marine Environmental Research, 150(May): 104758. DOI: https://doi.org/10.1016/j.marenvres.2019.104758

Downs, C.A., Fauth, J.E., Halas, J.C., Dustan, P., Bemiss, J. & Woodley, C.M. 2002. Oxidative stress and seasonal coral bleaching. Free Radical Biology and Medicine, 33(4): 533-543. DOI: https://doi.org/10.1016/S0891-5849(02)00907-3

Drew, E.A. 1972. The biology and physiology of alga-invertebrates symbioses. II. The density of symbiotic algal cells in a number of hermatypic hard corals and Alcyonarians from various depths. Journal of Experimental Marine Biology and Ecology, 9(1): 71–75. DOI: https://doi.org/10.1016/0022-0981(72)90008-1

Dubinsky, Z. & Stambler, N. 2011. Coral reefs: An ecosystem in transition. Springer, Dordrecht. 552 pp. DOI: https://doi.org/10.1007/978-94-007-0114-4

Dustan, P. 1979. Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis Ellis and Solander in relation to depth on a West Indian coral reef. Bulletin of Marine Science, 29(1): 79-95.

Edwards, A. J., Clark, S., Zahir, H., Rajasuriya, A., Naseer, A. & Rubens, J. 2001. Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface Temperature Anomalies and Initial Recovery. Marine Pollution Bulletin, 42(1): 7–15. DOI: https://doi.org/10.1016/S0025-326X(00)00200-9

Fagonee, I., Wilson, H.B., Hassell, M.P. & Turner, J.R. 1999. The dynamics of zooxanthellae populations: a long-term study in the field. Science, 283(February): 843–845. DOI: https://doi.org/10.1126/science.283.5403.843

Fitt, W.K., McFarland, F.K., Warner, M.E. & Chilcoat, G.C. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and Oceanography, 45(3): 677–685. DOI: https://doi.org/10.4319/lo.2000.45.3.0677

Fransolet, D., Roberty, S. & Plumier, J. C. 2012. Establishment of endosymbiosis: the case of cnidarians and Symbiodinium. Journal of Experimental Marine Biology and Ecology, 420: 1-7. DOI: https://doi.org/10.1016/j.jembe.2012.03.015

Fujise, L., Yamashita, H., Suzuki, G., Sasaki, K., Liao, L.M. & Koike, K. 2014. Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (Symbiodinium) from corals. PLoS ONE, 9(12): e114321. DOI: https://doi.org/10.1371/journal.pone.0114321

Guest, J.R., Baird, A.H., Maynard, J.A., Muttaqin, E., Edwards, A.J., Campbell, S.J., Yewdall, K., Affendi, Y.A. & Chou, L. M. 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE, 7(3): 1–8. DOI: https://doi.org/10.1371/journal.pone.0033353

Ibrahim, S., Mohd, W., Wan, R., Kassim, Z., Joni, Z.M., Zakaria, M.Z. & Hajisamae, S. 2006. Seasonal Abundance of Benthic Communities in Coral Areas of Karah. Turkish Journal of Fisheries and Aquatic Sciences, 136: 129–136.

Johannes, R.E. & Wiebe, W.J. 1970. Method for determination of coral tissue biomass and composition. Limnology and Oceanography, 15(5): 822-824. DOI: https://doi.org/10.4319/lo.1970.15.5.0822

Jones, R.J. & Yellowlees, D. 1997. Regulation and control of intracellular algae (= zooxanthellae) in hard corals. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1352): 457-468. DOI: https://doi.org/10.1098/rstb.1997.0033

Ladrière, O., Compere, P., Decloux, N., Vandewalle, P. & Poulicek, M. 2008. Morphological alterations of zooxanthellae in bleached cnidarian hosts. Cahiers de Biologie Marine, 49(3): 215-227.

Leletkin, V.A. 2000. Trophic status and population density of zooxanthellae in hermatypic corals. Russian Journal of Marine Biology, 26(4): 231–240. DOI: https://doi.org/10.1007/BF02759502

Li, S., Yu, K., Shi, Q., Chen, T., Zhao, M. & Zhao, J. 2008. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chinese Science Bulletin, 53(2): 295-303. DOI: https://doi.org/10.1007/s11434-007-0514-4

Marsh, J.J.A. 1970. Primary productivity of reef‐building calcareous red algae. Ecology, 51(2): 255-263. DOI: https://doi.org/10.2307/1933661

Marshall, P.A. & Baird, A. H. 2000. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs, 19(2): 155–163. DOI: https://doi.org/10.1007/s003380000086

Masuda, K., Goto, M., Maruyama, T. & Miyachi, S. 1993. Adaptation of solitary corals and their zooxanthellae to low light and UV radiation. Marine Biology, 117(4): 685–691. DOI: https://doi.org/10.1007/BF00349781

McCloskey, L.R. & Muscatine, L. 1984. Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth. Proceedings of the Royal Society of London. Series B 222(1227): 215-230. DOI: https://doi.org/10.1098/rspb.1984.0060

Muller-Parker, G., D’elia, C.F. & Cook, C.B. 2015. Coral reefs in the Anthropocene. Springer, Dordrecht. 200 pp.

Mwaura, J., Grimsditch, G., Kilonzo, J., Amiyo, N. & Obura, D. 2009. Zooxanthellae densities are highest in summer months in equatorial corals in Kenya. Western Indian Ocean Journal of Marine Science, 8(2): 193-202. DOI: https://doi.org/10.4314/wiojms.v8i2.56980

Nesa, B. & Hidaka, M. 2009. High zooxanthella density shortens the survival time of coral cell aggregates under thermal stress. Journal of Experimental Marine Biology and Ecology, 368(1): 81-87. DOI: https://doi.org/10.1016/j.jembe.2008.10.018

Nir, O., Gruber, D.F., Einbinder, S., Kark, S. & Tchernov, D. 2011. Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs, 30(4): 1089–1100. DOI: https://doi.org/10.1007/s00338-011-0801-z

Papina, M., Meziane, T. & Van Woesik, R. 2003. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135(3): 533-537. DOI: https://doi.org/10.1016/S1096-4959(03)00118-0

Phongsuwan, N., Chankong, A., Yamarunpatthana, C., Chansang, H., Boonprakob, R., Petchkumnerd, P., Thongtham, N., Paokantha, S., Chanmethakul, T., Panchaiyapoom, P. & Bundit, O.A. 2013. Status and changing patterns on coral reefs in Thailand during the last two decades. Deep Sea Research Part II: Topical Studies in Oceanography, 96: 19-24. DOI: https://doi.org/10.1016/j.dsr2.2013.02.015

Pillay, R.M., Willis, B. & Terashima, H. 2005. Trends in the density of zooxanthellae in Acropora millepora (Ehrenberg, 1834) at the Palm Island group, Great Barrier Reef, Australia. Symbiosis, 38: 209-226

Safuan, C.D.M., Ismail, K., Khalil, I., Ali, A., Chong, W.S., Chan, A.A., Ismail, M.N., Repin, I.M. & Bachok, Z. 2018. Quantification of coral reef benthos for coral health assessment in Labuan Marine Park, Malaysia. Journal of Sustainability Science and Management, 13(5): 1–26.

Safuan, C.D.M., Roseli, N.H., Bachok, Z., Akhir, M.F., Xia, C. & Qiao, F. 2020. First record of tropical storm (Pabuk - January 2019) damage on shallow water reef in Pulau Bidong, south of South China Sea. Regional Studies in Marine Science, 35(January 2019): 101216. DOI: https://doi.org/10.1016/j.rsma.2020.101216

Safuan, C.D.M., Samshuri, M.A., Jaafar, S.N.T., Tan, H.C. & Bachok, Z. 2021. Physiological response of shallow-water hard coral Acropora digitifera to heat stress via fatty acid composition. Frontiers in Marine Science, 8: 715167. DOI: https://doi.org/10.3389/fmars.2021.715167

Safuan, C.D.M., Wee, H.B., Ibrahim, Y.S., Idris, I. & Bachok, Z. 2016. Current status on community structure of coral reefs around west coast of peninsular malaysia using coral video transect technique. Journal of Sustainability Science and Management, 11(SpecialIssue1): 107–117.

Santos, S.R., Toyoshima, J. & Kinzie III,R.A. 2009. Spatial and temporal dynamics of symbiotic dinoflagellates (Symbiodinium: Dinophyta) in the perforate coral Montipora capitata. Galaxea, Journal of Coral Reef Studies, 11: 139–147. DOI: https://doi.org/10.3755/galaxea.11.139

Siebeck, U.E., Marshall, N.J., Klüter, A. & Hoegh-Guldberg, O. 2006. Monitoring coral bleaching using a colour reference card. Coral Reefs, 25(3): 453-460. DOI: https://doi.org/10.1007/s00338-006-0123-8

Smith, D.J., Suggett, D.J. & Baker, N.R. 2005. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biology, 11(1): 1-11. DOI: https://doi.org/10.1111/j.1529-8817.2003.00895.x

Stambler, N. & Dubinsky, Z. 2005. Corals as light collectors: An integrating sphere approach. Coral Reefs, 24(1): 1–9. DOI: https://doi.org/10.1007/s00338-004-0452-4

Stimson, J., Sakai, K. & Sembali, H. 2002. Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs, 21(4): 409–421. DOI: https://doi.org/10.1007/s00338-002-0264-3

Szmant, A.M. & Gassman, N.J. 1990. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs, 8(4): 217–224. DOI: https://doi.org/10.1007/BF00265014

Tan, C.H., Safuan, C.D.M., Idris, I., Noor, M.R.H.M., Samshuri, M.A., Kamarrudin, N., Zaidi, P. N., Jaafar, S.N. & Baird, A.H. 2020a. Multispecific synchronous coral spawning on Pulau Bidong, Malaysia, South China Sea. Bulletin of Marine Science, 96(January): 10–12. DOI: https://doi.org/10.5343/bms.2019.0067

Teece, M.A., Estes, B., Gelsleichter, E. & Lirman, D. 2011. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnology and Oceanography, 56(4): 1285-1296. DOI: https://doi.org/10.4319/lo.2011.56.4.1285

Toda, T., Okashita, T., Maekawa, T., Alfian, B.A.A.K., Rajuddin, M.K.M., Nakajima, R., Chen, W., Takahashi, K.T., Othman, B.H.R., & Terazaki, M. 2007. Community structures of coral reefs around peninsular Malaysia. Journal of Oceanography, 63(1): 113–123. DOI: https://doi.org/10.1007/s10872-007-0009-6

Veron, J.E.N. 2000. Corals of the World. Volumes 1-3. Australian Inst Mar Sci. 1,382 pp.

Wooldridge, S.A. 2013. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences, 10(3): 1647–1658. DOI: https://doi.org/10.5194/bg-10-1647-2013

Xu, L., Yu, K., Li, S., Liu, G., Tao, S., Shi, Q., Chen T, & Zhang, H. 2017. Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea. Coral Reefs, 36(2): 477-487. DOI: https://doi.org/10.1007/s00338-016-1532-y

Yakovleva, I.M., Baird, A.H., Yamamoto, H.H., Bhagooli, R., Nonaka, M. & Hidaka, M. 2009. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Marine Ecology Progress Series, 378: 105-112. DOI: https://doi.org/10.3354/meps07857

Yost, D.M., Wang, L.H., Fan, T.Y., Chen, C.S., Lee, R.W., Sogin, E. & Gates, R.D. 2013. Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals. Zoology, 116(5): 262–269. DOI: https://doi.org/10.1016/j.zool.2013.06.001

Published

30-06-2023 — Updated on 01-07-2023

Versions

How to Cite

Samshuri, M. A. ., Safuan, C. D. M., Maznan, N. A., Jaafar, S. N. ., & Bachok, Z. (2023). Symbiodiniaceae Density Pattern in Relation To Colony Morphology of Scleractinian Corals in Pulau Tioman and Pulau Bidong, Malaysia. Malaysian Applied Biology, 52(2), 21–31. https://doi.org/10.55230/mabjournal.v52i2.2510 (Original work published June 30, 2023)

Issue

Section

Research Articles

Funding data

Most read articles by the same author(s)