Changes of Fatty Acid Profiles in Mushroom Corals (Fungia fungites) After Short-Term Laboratory Exposure to Anti-Fouling Herbicide Diuron

https://doi.org/10.55230/mabjournal.v53i6.7

Authors

  • Hassan Rashid Ali Tropical Research Centre for Oceanography, Environment and Natural Resources,The State University of Zanzibar, P. O. Box 146, Zanzibar-Tanzania
  • Che Din Mohd Safuan Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Aminudin Muhammad Afiq-Firdaus Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mohammad Ali Sheikh Tropical Research Centre for Oceanography, Environment and Natural Resources,The State University of Zanzibar, P. O. Box 146, Zanzibar-Tanzania
  • Marinah Mohd Arifin Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan Izatul Asma Wan Talaat Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Zainudin Bachok Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

Keywords:

Diuron, Booster biocides, Fatty acids composition; Coral reef organisms, Water quality

Abstract

There is a great concern about the recent use of new anti-fouling chemicals for boats and ships to the coral reef health. Diuron is one of the new anti-fouling paints after the ban of organotin as an anti-fouling system (AFS) compound, but yet to be proven safe for the marine environment. Presently, we demonstrated the effects of Diuron on the fatty acid composition of hard coral species (Fungia fungites) in the laboratory. The corals were exposed to different doses of Diuron under short-term exposure (96 hr) and the fatty acid (FA) compositions of the coral tissues were determined using the gas chromatography technique. The fatty acid composition between fresh and control samples of F. fungites was significantly similar where both samples were dominated by Saturated FA (SAFA), followed by Polyunsaturated FA (PUFA) and Monounsaturated FA (MUFA). In contrast, the trends for exposed samples (20, 100 & 500 µg/L) of F. fungites showed a significant decrease (P<0.05) of SAFA, MUFA, and PUFA with species suffering more as the dose of diuron increased. As the level of dose increased, SAFA such as 16:0 was largely affected while unsaturated FA from ω3 and ω6 series showed a slight decrease in their composition. The decrease in fatty acid composition after Diuron exposure indicates that the anti-fouling chemical can affect corals and may impact their metabolism. The finding that Diuron significantly impacts coral tissue fatty acids and metabolism is crucial evidence for classifying marine water quality in sensitive habitats (Class 1) like coral reefs, which are widespread in Malaysian waters. This finding serves as a basis for incorporating Diuron anti-fouling as a parameter in the Malaysian Marine Water Quality Standard (MMWQS). These key policy reforms to protect coral reef ecosystems have multiple benefits for marine ecosystems and humans.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbott, A., Abel, P.D., Arnold, D.W. & Milne, A. 2000. Cost-benefit analysis of the use of TBT: The case for a treatment approach. Science of the Total Environment, 258(1-2): 5–19. DOI: https://doi.org/10.1016/S0048-9697(00)00505-2

Abdulkadir, S. & Tsuchiya, M. 2008. One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. Journal of Experimental Marine Biology and Ecology, 354(1): 1–8. DOI: https://doi.org/10.1016/j.jembe.2007.08.024

Ali, H.R., Arifin, M.M., Sheikh, M.A., Shazili, N.A.M., Bakari, S.S. & Bachok, Z. 2014. Contamination of diuron in coastal waters around Malaysian Peninsular. Marine Pollution Bulletin, 85(1): 287–291. DOI: https://doi.org/10.1016/j.marpolbul.2014.05.049

Ali, H.R., Safuan, C.D.M., Ariffin, M.M., Sheikh, M.A., Shazili, N.A.M., Afiq-Firdaus, A.M. & Bachok, Z. 2022. Changes of fatty acid composition in scleractinian coral. Malaysian Journal of Analytical Sciences, 26(4): 914-923.

Chesworth, J., Donkin, M. & Brown, M. 2004. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquatic Toxicology, 66(3): 293–305. DOI: https://doi.org/10.1016/j.aquatox.2003.10.002

Department of Environment Malaysia. 2021. Malaysian marine water quality standards and index [WWW Document]. URL https://www.doe.gov.my/wp-content/uploads/2021/09/BOOKLET-MALAYSIAN-MARINE-WATER-QUALITY-STANDARDS-AND-INDEX-ENGLISH-VERSION.pdf (accessed 11.05.23).

Dafforn, K.A., Lewis, J.A. & Johnston, E.L. 2011. Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin, 62(3): 453-465. DOI: https://doi.org/10.1016/j.marpolbul.2011.01.012

Flemming, H.C. 2016. EPS—then and now. Microorganisms, 4(4): 41. DOI: https://doi.org/10.3390/microorganisms4040041

Flores, F., Marques, J.A., Uthicke, S., Fisher, R., Patel, F., Kaserzon, S. & Negri, A.P. 2021. Combined effects of climate change and the herbicide diuron on the coral Acropora millepora. Marine Pollution Bulletin, 169: 112582. DOI: https://doi.org/10.1016/j.marpolbul.2021.112582

Giacomazzi, S. & Cochet, N. 2004. Environmental impact of diuron transformation: A review. Chemosphere, 56(11): 1021-1032. DOI: https://doi.org/10.1016/j.chemosphere.2004.04.061

Harland, A.D., Navarro, J.C., Spencer Davies, P. & Fixter, L.M. 1993. Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Marine Biology, 117: 113-117. DOI: https://doi.org/10.1007/BF00346432

ICS&ISF. 2009. Overview of the international shipping industry. International Chamber of Shipping and International Shipping Federation, Web publication. URL http://www.marisec.org/shippingfacts/keyfacts/ (accessed 6.14.22).

Imbs, A.B., Demidkova, D.A., Latypov, Y.Y. & Pham, L.Q. 2007. Application of fatty acids for chemotaxonomy of reef-building corals. Lipids, 42: 1035-1046. DOI: https://doi.org/10.1007/s11745-007-3109-6

International Maritime Oragnisation. 2002. Anti-fouling systems [WWW Document]. URL https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/FOULING2003.pdf (accessed 11.5.23)

Jones, R.J. & Kerswell, A.P. 2003. Phytotoxicity of Photosystem II (PSII) herbicides to coral. Marine Ecology Progress Series, 261: 149-159. DOI: https://doi.org/10.3354/meps261149

Jones, R. 2005. The ecotoxicological effects of Photosystem II herbicides on corals. Marine DOI: https://doi.org/10.1016/j.marpolbul.2005.06.027

Pollution Bulletin, 51: 495–506.

Konstantinou, I.K. & Triantafyllos A.A. 2003. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light : Intermediates and degradation pathways. Applied Catalysis B: Environmental, 42: 319–35. DOI: https://doi.org/10.1016/S0926-3373(02)00266-7

Kumar, M., Kumari, P., Gupta, V., Anisha, P.A., Reddy, C.R.K. & Jha, B. 2010. Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals, 23: 315-325. DOI: https://doi.org/10.1007/s10534-010-9290-8

Lachs, L., Johari, N.A.M., Le, D.Q., Safuan, C.D.M., Duprey, N.N., Tanaka, K., Hong, T.C., Ory, N.C., Bachok, Z., Baker, D.M., Kochzius, M. & Shirai, K. 2019. Effects of tourism-derived sewage on coral reefs: Isotopic assessments identify effective bioindicators. Marine Pollution Bulletin, 148, 85-96. DOI: https://doi.org/10.1016/j.marpolbul.2019.07.059

Lewis, J.A. 1998. Marine biofouling and its prevention on underwater surfaces. Materials Science Forum 22: 41–61.

Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A.R., Agüera, A. & Rodrı́guez, A. 2002. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today, 76(2-4): 209–220. DOI: https://doi.org/10.1016/S0920-5861(02)00220-1

Marine Department Malaysia. 2011. Malaysia Shipping Notice on the Implementation of International Convention on the Control of Harmful Anti-Fouling Systems on Ships, 2001 (AFS 2001) [WWW Document]. URL https://www.marine.gov.my/jlm/admin/assets/uploads/files/notis/353cf-msn272011afs.pdf (accessed 11.5.23).

Råberg, S., Nyström, M., Erös, M. & Plantman, P. 2003. Impact of the herbicides 2, 4-D and diuron on the metabolism of coral porites cylindrical. Marine Environmental Research, 56: 503-514. DOI: https://doi.org/10.1016/S0141-1136(03)00039-4

Mohd Safuan, C.D., Samshuri, M.A., Jaafar, S.N.T., Tan, H.C. & Bachok, Z. 2021. Physiological response of shallow-water hard coral Acropora digitifera to heat stress via fatty acid composition. Frontiers in Marine Science, 2021: 1187. DOI: https://doi.org/10.3389/fmars.2021.715167

Noufal, C.A.S.H. & Hassan, C.M.H.N. 2016. The impact of implementing the international convention on the control of harmful anti-fouling systems in ships (AFS convention) on the marine environment. Journal of Shipping and Ocean Engineering, 6: 57-63. DOI: https://doi.org/10.17265/2159-5879/2016.01.007

National Oceanic anad Atmospheric Administration. 2019. URL https://www.noaa.gov/education/resource-collections/marine-life/coral-reef-ecosystems (accessed 11.05.23)

Papina, M., Meziane, T. & Van Woesik, R. 2003. Symbiotic zooxanthellae provide the hostcoral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135(3): 533-537. DOI: https://doi.org/10.1016/S1096-4959(03)00118-0

Safuan, C.D.M., Tan, H.S., Samshuri, M.A., Afiq-Firdaus, A.M. & Bachok, Z. 2023. Chemotaxonomy of reef building corals (family: Acroporidae) via fatty acid biomarkers. Biochemical Systematics and Ecology, 106: 104565. DOI: https://doi.org/10.1016/j.bse.2022.104565

Sathivel, S., Witoon, P., Casey, C.G., Joan, M.K. & Steven, L. 2002. FA Composition of Crude Oil Recovered from Catfish Viscera. Journal of the American Oil Chemists’ Society, 79(10): 989–992. DOI: https://doi.org/10.1007/s11746-002-0592-5

Schultz, M.P. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling, 23(5-6): 331–341. DOI: https://doi.org/10.1080/08927010701461974

Steffens, W. 1997. Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture, 151(1-4): 97–119. DOI: https://doi.org/10.1016/S0044-8486(96)01493-7

Steinberg, P.D., De Nys, R. & Kjelleberg, S. 2002. Chemical cues for surface colonization. Journal of Chemical Ecology, 28(10): 1935–1951. DOI: https://doi.org/10.1023/A:1020789625989

Teece, M.A., Estes, B., Gelsleichter, E. & Lirman, D. 2011. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnology and Oceanography, 56(4): 1285-1296. DOI: https://doi.org/10.4319/lo.2011.56.4.1285

Watanabe, T., Yuyama, I. & Yasumura, S. 2006. Toxicological effects of biocides on symbiotic and aposymbiotic juveniles of the hermatypic coral Acropora tenuis. Journal of Experimental Marine Biology and Ecology, 339: 177–188. DOI: https://doi.org/10.1016/j.jembe.2006.07.020

West, K. & Van Woesik, R. 2001. Spatial and temporal variance of river discharge on Okinawa (Japan): inferring the temporal impact on adjacent coral reefs. Marine Pollution Bulletin, 42(10): 864–872. DOI: https://doi.org/10.1016/S0025-326X(01)00040-6

Wright, T. 2009. Marine Coatings Market. URL http://coatingsworld.com/articles/2009/05/marine-coatings-market.php/ (accessed 06.20.22).

Yonehara, Y. 2000. Recent topic on marine anti-fouling coatings. Bulletin of Society of the Sea Water Science, 54: 7-12.

Zhang, A.Q., Leung, K.M., Kwok, K.W., Bao, V.W. & Lam, M.H. 2008. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers. Marine Pollution Bulletin, 57(6-12): 575-586. DOI: https://doi.org/10.1016/j.marpolbul.2008.01.021

Published

25-12-2024

How to Cite

Ali, H. R., Mohd Safuan, C. D., Afiq-Firdaus, A. M., Sheikh, M. A., Mohd Arifin, M., Wan Talaat, W. I. A., & Bachok, Z. (2024). Changes of Fatty Acid Profiles in Mushroom Corals (Fungia fungites) After Short-Term Laboratory Exposure to Anti-Fouling Herbicide Diuron. Malaysian Applied Biology, 53(6), 77–86. https://doi.org/10.55230/mabjournal.v53i6.7

Issue

Section

Research Articles

Most read articles by the same author(s)