Methanolic Extract Of Swietenia macrophylla Exhibits Antibacterial And Antibiofilm Efficacy Against Gram-Positive Pathogens
Keywords:
antibacterial activity, antibiofilm activity, Gram-positive bacteria, phytochemical compounds, Swietenia macrophyllaAbstract
Gram-positive pathogens cause infections such as pneumonia, skin infections, anthrax, and sinusitis. The objective of this study was to determine the phytochemical profile, antibacterial and antibiofilm efficacy of Swietenia macrophylla methanolic extract (SMME) against Gram-positive pathogens. The secondary metabolites of SMME were analyzed using GC-MS while the antibacterial efficacy of SMME against Staphylococcus aureus ATCC 33862, Bacillus cereus ATCC 11778, Streptococcus pneumonia ATCC 19615, and Clostridium sporogenes ATCC 13124 was assessed using MIC and MBC assays. Biofilm biomass assay and time-kill assay were performed to determine the antibiofilm activity of SMME against the pathogens. Results demonstrated that six common antibacterial secondary metabolites were present in the SMME. The major compound was found to be β-amyrin (22.8%). The SMME showed the lowest MIC values against B. cereus (31.25 µg/mL) and C. sporogenes (31.25 µg/mL) and the lowest MBC value against S. aureus (1000 µg/mL). The SMME also significantly (p<0.05) inhibited all the biofilms. It started to inhibit S. pneumonia and C. sporogenes biofilms after 12 h of exposure. On the other hand, the BIC50 value showed that the SMME was most effective against B. cereus. In conclusion, the secondary metabolites in the SMME may contribute to the antibacterial and antibiofilm efficacy against Gram-positive pathogens.
Downloads
Metrics
References
Adesalu, T.A., Temenu, T.O. & Julius, M.L. 2016. Molecular characterization, lipid analysis and GCMS determination of bioactive compounds identified in a West African strain of the green alga Oedogonium (Chlorophyta). Journal of Pharmacognosy and Phytochemistry, 5(6): 01-06.
Ahsan, T., Chen, J., Zhao, X., Irfan, M. & Wu, Y. 2017. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by streptomyces strain KX852460 for the biological control of Rhizoctonia Solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7(1): 01–09. DOI: https://doi.org/10.1186/s13568-017-0351-z
Al-Dhabaan, F.A. 2019. Morphological, biochemical, and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences, 26(6): 1247–1252. DOI: https://doi.org/10.1016/j.sjbs.2018.05.029
Appiah, T., Boakye, Y.D. & Agyare, C. 2017. Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evidence-Based Complementary and Alternative Medicine, 2017: 4534350. DOI: https://doi.org/10.1155/2017/4534350
Ayyappadhas, R., Chellian, J., Kenneth, N., Dayana, N. & Dhanalekshmi, U.M. 2012. Preliminary studies on antimicrobial activity of Swietenia macrophylla leaf extract. International Journal of Pharmaceutical Sciences Review and Research, 16(2): 1-4.
Bazargani, M.M. & Rohloff, J. 2016. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61: 156–164. DOI: https://doi.org/10.1016/j.foodcont.2015.09.036
Begashaw, B., Mishra, B., Tsegaw, A. & Shewamene, Z. 2017. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complementary and Alternative Medicine, 17: 337. DOI: https://doi.org/10.1186/s12906-017-1841-x
Boussaada, O., Saidana, D., Chriaa, J., Chraif, I., Ben Ammar, R., Mahjoub, M.A., Mighri, Z., Daami, M. & Helal, A.N. 2008. Chemical composition and antimicrobial activity of volatile components of Scorzonera undulata. Journal of Essential Oil Research, 20(4): 358–362. DOI: https://doi.org/10.1080/10412905.2008.9700030
Brunt, J., Cross, K.L. & Peck, M.W. 2015. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell. Food Microbiology, 51: 45–50. DOI: https://doi.org/10.1016/j.fm.2015.04.013
Donkor, E.S. 2013. Understanding the pneumococcus: Transmission and evolution. Frontiers in Cellular and Infection Microbiology, 3(7): 1–5. DOI: https://doi.org/10.3389/fcimb.2013.00007
El-Hagrassi, A.M., Ali, M.M., Osman, A.F. & Shaaban, M. 2011. Phytochemical investigation and biological studies of Bombax malabaricum flowers. Natural Product Research, 25(2): 141–151. DOI: https://doi.org/10.1080/14786419.2010.518146
El-Shafay, S.M., Ali, S.S. & El-Sheekh, M.M. 2016. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. The Egyptian Journal of Aquatic Research, 42 (1): 65-74. DOI: https://doi.org/10.1016/j.ejar.2015.11.006
Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff, J.N. & McGaw, L.J. 2019. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African eugenia and syzygium (myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1): 141. DOI: https://doi.org/10.1186/s12906-019-2547-z
Girija, S., Duraipandiyan, V., Kuppusamy, P.S., Gajendran, H. & Rajagopal, R. 2014. Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. International Scholarly Research Notices, 2014: 820745. DOI: https://doi.org/10.1155/2014/820745
Glasset, B., Herbin, S., Granier, S.A., Cavalié, L., Lafeuille, E., Guérin, C., Ruimy, R., Casagrande-Magne, F., Levast, M., Chautemps, N., Decousser, J.W., Belotti, L., Pelloux, I., Robert, J., Brisabois, A. & Ramarao, N. 2018. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE, 13(5): e0194346. DOI: https://doi.org/10.1371/journal.pone.0194346
Gopalan, H.K., Md Hanafiah, N.F., Chean Ring, L., Tan, W.N., Wahidin, S., Hway, T.S. & Yenn, T.W. 2019. Chemical composition and antimicrobial efficiency of Swietenia macrophylla seed extract on clinical wound pathogens. Natural Product Sciences, 25(1): 38. DOI: https://doi.org/10.20307/nps.2019.25.1.38
Isa, S.F.M., Hamid, U.M.A. & Yahya, M.F.Z.R. 2022. Treatment with the combined antimicrobials triggers proteomic changes in P. aeruginosa-C. albicans polyspecies biofilms. ScienceAsia, 48(2): 215-222. DOI: https://doi.org/10.2306/scienceasia1513-1874.2022.020
Jabeen, K., Javaid, A., Ahmad, E. & Athar, M. 2011. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Natural Product Research, 25(3): 264–276. DOI: https://doi.org/10.1080/14786411003754298
Johari, N.A., Amran, S.S.D., Kamaruzzaman, A.N.A., Man, C.A.I.C. & Yahya, M.F.Z.R. 2020. Anti-biofilm potential and mode of action of Malaysian plant species: A review. Science Letters, 14: 34–46. DOI: https://doi.org/10.24191/sl.v14i2.9541
Kang, J., Liu, L., Wu, X., Sun, Y. & Liu, Z. 2018. Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation. Applied Microbiology and Biotechnology, 102(23): 10209–10218. DOI: https://doi.org/10.1007/s00253-018-9401-y
Limsuwan, S., Kayser, O. & Voravuthikunchai, S.P. 2012. Antibacterial activity of Rhodomyrtus tomentosa(aiton) hassk. leaf extract against clinical isolates of Streptococcus pyogenes. Evidence-Based Complementary and Alternative Medicine, 2012: 697183. DOI: https://doi.org/10.1155/2012/697183
Mallik, J. & Banik, R.K. 2012. In-vitro studies on antimicrobial and thrombolytic activity of Swietenia macrophylla King. Journal of Pharmaceutical Research and Opinion, 2(5): 45-48.
Man, C.A.I.C., Razak, W.R.W.A. & Yahya, M.F.Z.R. 2022. Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. Malaysian Applied Biology, 51(4): 45-56. DOI: https://doi.org/10.55230/mabjournal.v51i4.10
Minami, M., Konishi, T., Takase, H., Jiang, Z., Arai, T. & Makino, T. 2017. Effect of shin’iseihaito (Xinyiqingfeitang) on acute Streptococcus pneumoniaemurine sinusitis via macrophage activation. Evidence-Based Complementary and Alternative Medicine, 2017: 4293291. DOI: https://doi.org/10.1155/2017/4293291
Mitra, R., Orbell, J. & Muralitharan, M.S. 2007. Agriculture — medicinal plants of Malaysia. Asia-Pacific Biotech News, 11(02): 105–110. DOI: https://doi.org/10.1142/S0219030307000110
Mustafa, H.S. 2014. Staphylococcus aureus can produce catalase enzyme when adding to human WBCS as a source of H2O2 productions in human plasma or serum in the laboratory. Open Journal of Medical Microbiology, 4(4): 249–251. DOI: https://doi.org/10.4236/ojmm.2014.44028
Ordóñez, J.E. & Ordóñez, A. 2023. A cost-effectiveness analysis of pneumococcal conjugate vaccines in infants and herd protection in older adults in Colombia, Expert Review of Vaccines, 22(1): 216-225. DOI: https://doi.org/10.1080/14760584.2023.2184090
Othman, N.A. & Yahya, M.F.Z.R. 2019. In silico analysis of essential and non-homologous proteins in Salmonella typhimurium biofilm. Journal of Physics: Conference Series, 1349: 012133. DOI: https://doi.org/10.1088/1742-6596/1349/1/012133
Quelemes, P.V., Perfeito, M.L.G., Guimarães, M.A., dos Santos, R.C., Lima, D.F., Nascimento, C., Silva, M.P.N., Soares, M.J., Ropke, C.D., Eaton, P., de Moraes, J. & Leite, J.R. 2015. Effect of neem (Azadirachta indica A. Juss) leaf extract on resistant Staphylococcus aureus biofilm formation and Schistosoma mansoni worms. Journal of Ethnopharmacology, 175: 287–294. DOI: https://doi.org/10.1016/j.jep.2015.09.026
Ramli, S., Lau, K.Y. & Rukayadi, Y. 2018. Antibacterial and sporicidal activities of syzygium polyanthum L. extract against Bacillus cereus isolated from Rice. Sains Malaysiana, 47(10): 2301–2310. DOI: https://doi.org/10.17576/jsm-2018-4710-06
Rashid, S.A.A., Yaacob, M.F., Aazmi, M.S., Jesse, F.F.A., & Yahya, M.F.Z.R. 2022. Inhibition of Corynebacterium pseudotuberculosis biofilm by DNA synthesis and protein synthesis inhibitors. Journal of Sustainability Science and Management, 17(4): 49-56. DOI: https://doi.org/10.46754/jssm.2022.4.004
Rouis-Soussi, L.S., Ayeb-Zakhama, A.E., Mahjoub, A., Flamini, G., Jannet, H.B. & Harzallah-Skhiri, F. 2014. Chemical composition and antibacterial activity of essential oils from the Tunisian allium nigrum L. EXCLI journal, 13: 526–535.
Rukaiyat, M., Garba, S., & Labaran, S. 2015. Antimicrobial activities of hexacosane isolated from Sanseveria liberica (Gerome and Labroy) plant. Advancement in Medicinal Plant Research, 3(3): 120-125.
Sahgal, G., Ramanathan, S., Sasidharan, S., Mordi, M., Ismail, S. & Mansor, S. 2009. Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Tropical biomedicine, 26(3): 274-279.
Sathasivam, P., Pradap, V. & Shanmugasundaram M. 2022. Extensive facial cellulitis due to staphylococcal infection in young, immune-competent females. Annals of Indian Academy Otorhinolaryngology Head and Neck Surgery, 6: 22-25. DOI: https://doi.org/10.4103/aiao.aiao_5_22
Sepahvand, A., Ezatpour, B., Niazi, M., Rashidipour, M., Aflatoonian, M. & Soleimani, M. 2019. Chemical composition and antifungal activity of Nectaroscordum tripedale extract against some pathogenic dermatophyte strains. Entomology and Applied Science Letters, 5(2): 10-15.
Sutherland, I.W. 2001. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology, 147(1): 3-9. DOI: https://doi.org/10.1099/00221287-147-1-3
Tan, S., Osman, H., Wong, K., Boey, P. & Ibrahim, P. 2009. Antimicrobial and antioxidant activities of Swietenia macrophylla leaf extracts. Asian Journal Food and Agro-Industry, 2(02): 181-188.
Uma, B. & Parvathavarthini, R. 2010. Antibacterial effect of hexane extract of sea urchin, Temnopleurus alexandri. International Journal of PharmTech Research, 2(3): 1677-1680.
Ushie O.A., Onen, A.I., Ugbogu, O.C., Neji, P.A. & Olumide.V. B. 2016. Phytochemical screening and antimicrobial activities of leaf extracts of Swietenia macrophylla. ChemSearch Journal, 7(2): 64 - 69.
Yaacob, M.F., Murata, A., Nor, N.H., Jesse, F.F., & Yahya, M.F.Z.R. 2021a. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University - Science, 33(1): 101225. DOI: https://doi.org/10.1016/j.jksus.2020.10.022
Yaacob, M.F., Abdullah, F.F.J., Jamil, N.M., Yunus, N.M., Aazmi, S. & Yahya, M.F.Z.R. 2021b. The effect of dimethyl sulfoxide on Corynebacterium pseudotuberculosis biofilm: An in silico prediction and experimental validation. Journal of Physics: Conference Series, 874: 012055. DOI: https://doi.org/10.1088/1742-6596/1874/1/012055
Yahya, M.F.Z.R., Saifuddin, N.F.H.A. & Hamid, U.M.A. 2014. Biofilm killing effects of Chromolaena odorata extracts against Pseudomonas aeruginosa. Research Journal of Phytochemistry, 8: 64-73. DOI: https://doi.org/10.3923/rjphyto.2014.64.73
Yahya, M.F., Alias, Z. & Karsani, S.A. 2017. Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal, 36(4): 286-298. DOI: https://doi.org/10.1007/s10930-017-9719-9
Zawawi, W.M.A.W.M., Ibrahim, M.S.A., Rahmad, N., Hamid, U.M.A. & Yahya, M.F.Z.R. 2020. Proteomic analysis of Pseudomonas aeruginosa treated with Chromolaena odorata extracts. Malaysian Journal of Microbiology, 16(2): 124-133. DOI: https://doi.org/10.21161/mjm.190512
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Teknologi MARA
Grant numbers PYPA