Methanolic Extract Of Swietenia macrophylla Exhibits Antibacterial And Antibiofilm Efficacy Against Gram-Positive Pathogens


  • Siti Sarah Diyana Amran Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Taufiq Mat Jalil Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Aziyah Abdul Aziz Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Fakharul Zaman Raja Yahya Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Molecular Microbial Pathogenicity Research Group, Pharmaceutical and Life Sciences Community of Research, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia


antibacterial activity, antibiofilm activity, Gram-positive bacteria, phytochemical compounds, Swietenia macrophylla


Gram-positive pathogens cause infections such as pneumonia, skin infections, anthrax, and sinusitis. The objective of this study was to determine the phytochemical profile, antibacterial and antibiofilm efficacy of Swietenia macrophylla methanolic extract (SMME) against Gram-positive pathogens. The secondary metabolites of SMME were analyzed using GC-MS while the antibacterial efficacy of SMME against Staphylococcus aureus ATCC 33862, Bacillus cereus ATCC 11778, Streptococcus pneumonia ATCC 19615, and Clostridium sporogenes ATCC 13124 was assessed using MIC and MBC assays. Biofilm biomass assay and time-kill assay were performed to determine the antibiofilm activity of SMME against the pathogens. Results demonstrated that six common antibacterial secondary metabolites were present in the SMME. The major compound was found to be β-amyrin (22.8%). The SMME showed the lowest MIC values against B. cereus (31.25 µg/mL) and C. sporogenes (31.25 µg/mL) and the lowest MBC value against S. aureus (1000 µg/mL). The SMME also significantly (p<0.05) inhibited all the biofilms. It started to inhibit S. pneumonia and C. sporogenes biofilms after 12 h of exposure. On the other hand, the BIC50 value showed that the SMME was most effective against B. cereus. In conclusion, the secondary metabolites in the SMME may contribute to the antibacterial and antibiofilm efficacy against Gram-positive pathogens.


Download data is not yet available.


Metrics Loading ...


Adesalu, T.A., Temenu, T.O. & Julius, M.L. 2016. Molecular characterization, lipid analysis and GCMS determination of bioactive compounds identified in a West African strain of the green alga Oedogonium (Chlorophyta). Journal of Pharmacognosy and Phytochemistry, 5(6): 01-06.

Ahsan, T., Chen, J., Zhao, X., Irfan, M. & Wu, Y. 2017. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by streptomyces strain KX852460 for the biological control of Rhizoctonia Solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express, 7(1): 01–09. DOI:

Al-Dhabaan, F.A. 2019. Morphological, biochemical, and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences, 26(6): 1247–1252. DOI:

Appiah, T., Boakye, Y.D. & Agyare, C. 2017. Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evidence-Based Complementary and Alternative Medicine, 2017: 4534350. DOI:

Ayyappadhas, R., Chellian, J., Kenneth, N., Dayana, N. & Dhanalekshmi, U.M. 2012. Preliminary studies on antimicrobial activity of Swietenia macrophylla leaf extract. International Journal of Pharmaceutical Sciences Review and Research, 16(2): 1-4.

Bazargani, M.M. & Rohloff, J. 2016. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61: 156–164. DOI:

Begashaw, B., Mishra, B., Tsegaw, A. & Shewamene, Z. 2017. Methanol leaves extract Hibiscus micranthus Linn exhibited antibacterial and wound healing activities. BMC Complementary and Alternative Medicine, 17: 337. DOI:

Boussaada, O., Saidana, D., Chriaa, J., Chraif, I., Ben Ammar, R., Mahjoub, M.A., Mighri, Z., Daami, M. & Helal, A.N. 2008. Chemical composition and antimicrobial activity of volatile components of Scorzonera undulata. Journal of Essential Oil Research, 20(4): 358–362. DOI:

Brunt, J., Cross, K.L. & Peck, M.W. 2015. Apertures in the Clostridium sporogenes spore coat and exosporium align to facilitate emergence of the vegetative cell. Food Microbiology, 51: 45–50. DOI:

Donkor, E.S. 2013. Understanding the pneumococcus: Transmission and evolution. Frontiers in Cellular and Infection Microbiology, 3(7): 1–5. DOI:

El-Hagrassi, A.M., Ali, M.M., Osman, A.F. & Shaaban, M. 2011. Phytochemical investigation and biological studies of Bombax malabaricum flowers. Natural Product Research, 25(2): 141–151. DOI:

El-Shafay, S.M., Ali, S.S. & El-Sheekh, M.M. 2016. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. The Egyptian Journal of Aquatic Research, 42 (1): 65-74. DOI:

Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff, J.N. & McGaw, L.J. 2019. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African eugenia and syzygium (myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1): 141. DOI:

Girija, S., Duraipandiyan, V., Kuppusamy, P.S., Gajendran, H. & Rajagopal, R. 2014. Chromatographic characterization and GC-MS evaluation of the bioactive constituents with antimicrobial potential from the pigmented ink of Loligo duvauceli. International Scholarly Research Notices, 2014: 820745. DOI:

Glasset, B., Herbin, S., Granier, S.A., Cavalié, L., Lafeuille, E., Guérin, C., Ruimy, R., Casagrande-Magne, F., Levast, M., Chautemps, N., Decousser, J.W., Belotti, L., Pelloux, I., Robert, J., Brisabois, A. & Ramarao, N. 2018. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE, 13(5): e0194346. DOI:

Gopalan, H.K., Md Hanafiah, N.F., Chean Ring, L., Tan, W.N., Wahidin, S., Hway, T.S. & Yenn, T.W. 2019. Chemical composition and antimicrobial efficiency of Swietenia macrophylla seed extract on clinical wound pathogens. Natural Product Sciences, 25(1): 38. DOI:

Isa, S.F.M., Hamid, U.M.A. & Yahya, M.F.Z.R. 2022. Treatment with the combined antimicrobials triggers proteomic changes in P. aeruginosa-C. albicans polyspecies biofilms. ScienceAsia, 48(2): 215-222. DOI:

Jabeen, K., Javaid, A., Ahmad, E. & Athar, M. 2011. Antifungal compounds from Melia azedarach leaves for management of Ascochyta rabiei, the cause of chickpea blight. Natural Product Research, 25(3): 264–276. DOI:

Johari, N.A., Amran, S.S.D., Kamaruzzaman, A.N.A., Man, C.A.I.C. & Yahya, M.F.Z.R. 2020. Anti-biofilm potential and mode of action of Malaysian plant species: A review. Science Letters, 14: 34–46. DOI:

Kang, J., Liu, L., Wu, X., Sun, Y. & Liu, Z. 2018. Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation. Applied Microbiology and Biotechnology, 102(23): 10209–10218. DOI:

Limsuwan, S., Kayser, O. & Voravuthikunchai, S.P. 2012. Antibacterial activity of Rhodomyrtus tomentosa(aiton) hassk. leaf extract against clinical isolates of Streptococcus pyogenes. Evidence-Based Complementary and Alternative Medicine, 2012: 697183. DOI:

Mallik, J. & Banik, R.K. 2012. In-vitro studies on antimicrobial and thrombolytic activity of Swietenia macrophylla King. Journal of Pharmaceutical Research and Opinion, 2(5): 45-48.

Man, C.A.I.C., Razak, W.R.W.A. & Yahya, M.F.Z.R. 2022. Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. Malaysian Applied Biology, 51(4): 45-56. DOI:

Minami, M., Konishi, T., Takase, H., Jiang, Z., Arai, T. & Makino, T. 2017. Effect of shin’iseihaito (Xinyiqingfeitang) on acute Streptococcus pneumoniaemurine sinusitis via macrophage activation. Evidence-Based Complementary and Alternative Medicine, 2017: 4293291. DOI:

Mitra, R., Orbell, J. & Muralitharan, M.S. 2007. Agriculture — medicinal plants of Malaysia. Asia-Pacific Biotech News, 11(02): 105–110. DOI:

Mustafa, H.S. 2014. Staphylococcus aureus can produce catalase enzyme when adding to human WBCS as a source of H2O2 productions in human plasma or serum in the laboratory. Open Journal of Medical Microbiology, 4(4): 249–251. DOI:

Ordóñez, J.E. & Ordóñez, A. 2023. A cost-effectiveness analysis of pneumococcal conjugate vaccines in infants and herd protection in older adults in Colombia, Expert Review of Vaccines, 22(1): 216-225. DOI:

Othman, N.A. & Yahya, M.F.Z.R. 2019. In silico analysis of essential and non-homologous proteins in Salmonella typhimurium biofilm. Journal of Physics: Conference Series, 1349: 012133. DOI:

Quelemes, P.V., Perfeito, M.L.G., Guimarães, M.A., dos Santos, R.C., Lima, D.F., Nascimento, C., Silva, M.P.N., Soares, M.J., Ropke, C.D., Eaton, P., de Moraes, J. & Leite, J.R. 2015. Effect of neem (Azadirachta indica A. Juss) leaf extract on resistant Staphylococcus aureus biofilm formation and Schistosoma mansoni worms. Journal of Ethnopharmacology, 175: 287–294. DOI:

Ramli, S., Lau, K.Y. & Rukayadi, Y. 2018. Antibacterial and sporicidal activities of syzygium polyanthum L. extract against Bacillus cereus isolated from Rice. Sains Malaysiana, 47(10): 2301–2310. DOI:

Rashid, S.A.A., Yaacob, M.F., Aazmi, M.S., Jesse, F.F.A., & Yahya, M.F.Z.R. 2022. Inhibition of Corynebacterium pseudotuberculosis biofilm by DNA synthesis and protein synthesis inhibitors. Journal of Sustainability Science and Management, 17(4): 49-56. DOI:

Rouis-Soussi, L.S., Ayeb-Zakhama, A.E., Mahjoub, A., Flamini, G., Jannet, H.B. & Harzallah-Skhiri, F. 2014. Chemical composition and antibacterial activity of essential oils from the Tunisian allium nigrum L. EXCLI journal, 13: 526–535.

Rukaiyat, M., Garba, S., & Labaran, S. 2015. Antimicrobial activities of hexacosane isolated from Sanseveria liberica (Gerome and Labroy) plant. Advancement in Medicinal Plant Research, 3(3): 120-125.

Sahgal, G., Ramanathan, S., Sasidharan, S., Mordi, M., Ismail, S. & Mansor, S. 2009. Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Tropical biomedicine, 26(3): 274-279.

Sathasivam, P., Pradap, V. & Shanmugasundaram M. 2022. Extensive facial cellulitis due to staphylococcal infection in young, immune-competent females. Annals of Indian Academy Otorhinolaryngology Head and Neck Surgery, 6: 22-25. DOI:

Sepahvand, A., Ezatpour, B., Niazi, M., Rashidipour, M., Aflatoonian, M. & Soleimani, M. 2019. Chemical composition and antifungal activity of Nectaroscordum tripedale extract against some pathogenic dermatophyte strains. Entomology and Applied Science Letters, 5(2): 10-15.

Sutherland, I.W. 2001. Biofilm exopolysaccharides: A strong and sticky framework. Microbiology, 147(1): 3-9. DOI:

Tan, S., Osman, H., Wong, K., Boey, P. & Ibrahim, P. 2009. Antimicrobial and antioxidant activities of Swietenia macrophylla leaf extracts. Asian Journal Food and Agro-Industry, 2(02): 181-188.

Uma, B. & Parvathavarthini, R. 2010. Antibacterial effect of hexane extract of sea urchin, Temnopleurus alexandri. International Journal of PharmTech Research, 2(3): 1677-1680.

Ushie O.A., Onen, A.I., Ugbogu, O.C., Neji, P.A. & Olumide.V. B. 2016. Phytochemical screening and antimicrobial activities of leaf extracts of Swietenia macrophylla. ChemSearch Journal, 7(2): 64 - 69.

Yaacob, M.F., Murata, A., Nor, N.H., Jesse, F.F., & Yahya, M.F.Z.R. 2021a. Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University - Science, 33(1): 101225. DOI:

Yaacob, M.F., Abdullah, F.F.J., Jamil, N.M., Yunus, N.M., Aazmi, S. & Yahya, M.F.Z.R. 2021b. The effect of dimethyl sulfoxide on Corynebacterium pseudotuberculosis biofilm: An in silico prediction and experimental validation. Journal of Physics: Conference Series, 874: 012055. DOI:

Yahya, M.F.Z.R., Saifuddin, N.F.H.A. & Hamid, U.M.A. 2014. Biofilm killing effects of Chromolaena odorata extracts against Pseudomonas aeruginosa. Research Journal of Phytochemistry, 8: 64-73. DOI:

Yahya, M.F., Alias, Z. & Karsani, S.A. 2017. Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal, 36(4): 286-298. DOI:

Zawawi, W.M.A.W.M., Ibrahim, M.S.A., Rahmad, N., Hamid, U.M.A. & Yahya, M.F.Z.R. 2020. Proteomic analysis of Pseudomonas aeruginosa treated with Chromolaena odorata extracts. Malaysian Journal of Microbiology, 16(2): 124-133. DOI:



How to Cite

Amran, S. S. D., Jalil, M. T. M., Abdul Aziz, A., & Yahya, M. F. Z. R. (2023). Methanolic Extract Of Swietenia macrophylla Exhibits Antibacterial And Antibiofilm Efficacy Against Gram-Positive Pathogens. Malaysian Applied Biology, 52(2), 129–138.



Research Articles

Funding data

Most read articles by the same author(s)