Bioactivity of Clitoria ternatea Crude Extracts Against Pathogenic Bacteria

https://doi.org/10.55230/mabjournal.v52i2.2542

Authors

  • Liana Mohd Zulkamal School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Nurul Afifah Ainna Zolhalim School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Farizan Aris School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Nurul Aili Zakaria School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Farida Zuraina Mohd Yusof School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Darah Ibrahim Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
  • Mohd Taufiq Mat Jalil School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

Keywords:

Clitoria ternatea, antibacterial activity, Well diffusion and disk diffusion assays, MIC and MBC values, and antioxidant activity

Abstract

Clitoria ternatea, sometimes referred to as the Asian pigeon wings blue pea, the butterfly pea, or the Darwin pea, is a Fabaceae plant species that has been shown to possess antibacterial effects against several pathogenic microbes. Hence, the present study has been carried out to access the antibacterial activity of C. ternatea flower extracted with water and methanol against pathogenic bacteria. The well and disk diffusion assays were performed to determine the antibacterial activity of C. ternatea flower extracts. The efficacy of the extracts was then evaluated via broth microdilution assay to obtain MIC and MBC values and the growth reduction assay. Meanwhile, the DPPH scavenging test was used to assess the antioxidant activity of the crude extracts. The results of the well and disc diffusion assays showed that Gram-positive bacteria were more sensitive to both extracts compared to Gram-negative bacteria. Meanwhile, the methanolic extract showed higher antibacterial activity on both Gram-positive and Gram-negative bacteria compared to the aqueous extract. The results of the MIC and MBC tests showed that the methanolic extract was bactericidal to both Gram-positive and Gram-negative bacteria. The aqueous extract, however, demonstrated bacteriostatic activity against Gram-negative bacteria and bactericidal activity solely against Gram-positive bacteria. After a 24-h exposure period, a growth reduction assay showed that the methanolic extract could suppress both Gram-positive and Gram-negative bacteria by up to 99%. Meanwhile, the aqueous extract showed an inhibition percentage value ranging from 75% to 96% after an incubation period. The aqueous extract had the lowest antioxidant activity, with an EC50 value of 87.78 µg/mL, whereas the methanolic extract had a fair amount of antioxidant activity when compared to the control (quercetin), according to the DPPH scavenging assay. The present study suggests that C. ternatea extracts as a potential antibacterial agent against pathogenic bacteria with significant antioxidant activity and this activity may be due to the presence of anthocyanin and its derivatives.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bonev, B., Hooper, J. & Parisot, J. 2008. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy, 61(6): 1295-1301. DOI: https://doi.org/10.1093/jac/dkn090

Cerezo, A.B., Cătunescu, G.M., González, M.M., Hornedo-Ortega, R., Pop, C.R., Rusu, C.C., Chirilă, F., Rotar, A.M., Garcia-Parrilla, M.C. & Troncoso, A.M. 2020. Anthocyanins in blueberries grown in hot climate exert strong antioxidant activity and may be effective against urinary tract bacteria. Antioxidants, 9: 478. DOI: https://doi.org/10.3390/antiox9060478

CLSI. 2022. Performance Standards for Antimicrobial Susceptibility Testing. 32nd Ed. CLSI supplement M100. Clinical and Laboratory Standards Institute.

Del Giudice, P. 2020. Skin infections caused by Staphylococcus aureus. Acta Dermato-Venereologica, 100(9): adv00110. DOI: https://doi.org/10.2340/00015555-3466

Dodou, H., de Morais Batista, A., Sales, G., de Medeiros, S., Rodrigues, M., Nogueira, P., Silveira, E. & Nogueira, N. 2017. Violacein antimicrobial activity on Staphylococcus epidermidis and synergistic effect on commercially available antibiotics. Journal of Applied Microbiology, 123: 853-860. DOI: https://doi.org/10.1111/jam.13547

Gupta, G.K., Chahal, J. & Bhati, M. 2010. Clitoria ternatea (L.): Old and new aspects. Journal of Pharmacy Research, 3(11): 2610-2614.

Hamza, W.A.E., Turki, I.Y.H. & Dagash, Y.M.I. 2021. Study on the antibacterial activity of Clitoria ternatea leaves-against some of pathogenic bacteria. Journal of Agricultural and Veterinary Sciences, 22(1): 83-90.

Hartantyo, S.H.P., Chau, M.L., Koh, T.H., Yap, M. Yi, T., Cao, D.Y.H., Gutiérrez, R.A. & Ng, L.C. 2020. Foodborne Klebsiella pneumoniae: Virulence potential, antibiotic resistance, and risks to food safety. Journal of Food Protection, 83(7): 1096-1103. DOI: https://doi.org/10.4315/JFP-19-520

Jalil, M.T.M. & Ibrahim, D. 2022. Volatile bioactive compounds from Lasiodiplodia pseudotheobromae IBRL OS-64, an endophytic fungus residing in the leaf of Ocimum sanctum. HAYATI Journal of Biosciences, 29(5): 570-585. https://doi.org/10.4308/hjb.29.5.570-585 DOI: https://doi.org/10.4308/hjb.29.5.570-585

Jalil, M.T.M., Hairudin, N.H.M. & Ibrahim, D. 2021. Muscodor sp. IBRL OS-94, a promising endophytic fungus of Ocimum sanctum with antimicrobial activity. Pharmaceutical Sciences, 27(2): 268-280. DOI: https://doi.org/10.34172/PS.2020.79

Jalil, M.T.M., Nurul Aili Zakaria, N.A., Suhaimi, N.S.M. & Ibrahim, D. 2022. Crude extracts of an endophytic fungus attenuate the growth of pathogenic bacteria in aquaculture. Iranian Journal of Microbiology, 14(3): 383-394.

Jamil, N. & Pa’ee. 2002. Antimicrobial activity from leaf, flower, stem, and root of Clitoria ternatea - A review. AIP Conference Proceedings, 020044: 1-5.

Jeyaraj, E.J., Lim, Y.Y. & Choo, W.S. 2022a. Antioxidant, cytotoxic, and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction. Science Reports, 12: 14890. DOI: https://doi.org/10.1038/s41598-022-19146-z

Jeyaraj, E.J., Nathan, S., Lim, Y.Y. & Choo, W.S. 2022b. Antibiofilm properties of Clitoria ternatea flower anthocyanin-rich fraction towards Pseudomonas aeruginosa. Access Microbiology, 4(4): 000343. DOI: https://doi.org/10.1099/acmi.0.000343

Kamilla, L., Mansor, S.M., Ramanathan, S. & Sasidharan, S. 2009. Antimicrobial activity of Clitoria ternatea (L.) extract. Pharmacology, 1: 731-738.

Karaman, I., Sahin, F., Gulluce, M., Ogutçu, H., Sengul, M. & Adiguzel A. 2003. Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. Journal of Ethnopharmacology, 85(2-3): 231-5. DOI: https://doi.org/10.1016/S0378-8741(03)00006-0

Klemm, E.J., Wong, V.K. & Dougan, G. 2018. Emergence of dominant multidrug-resistant bacterial clades: Lessons from history and whole-genome sequencing. Proceedings of the National Academy of Sciences (PNAS), 115(51): 12872-12877. DOI: https://doi.org/10.1073/pnas.1717162115

Lakshan, S.A.T., Pathirana, C.K., Jayanath, N.Y., Abeysekara, W.P.K.M. & Abeysekara, W.K.S.M. 2020. Antioxidant and selected chemical properties of the flowers of three different varieties of butterfly pea (Clitoria ternatea L.). Ceylon Journal of Science, 49(2): 195-201. DOI: https://doi.org/10.4038/cjs.v49i2.7740

Mandal, S.M., Dias, R.O. & Franco, O.L. 2017. Phenolic compounds in antimicrobial therapy. Journal of Medicinal Food, 20(10): 1031-1038. DOI: https://doi.org/10.1089/jmf.2017.0017

Miller, S.I. & Salama, N.R. 2018. The gram-negative bacterial periplasm: Size matters. PLoS Biology, 16: e2004935. DOI: https://doi.org/10.1371/journal.pbio.2004935

Moo, C.L., Osman, M.A., Yang, S.K., Yap, W.S., Ismail, S., Lim, S.H.E., Chong, C.M. & Lai, K.S. 2021. Antimicrobial activity and mode of action of 1,8‑cineol against carbapenemase‑producing Klebsiella pneumoniae. Scientific Reports, 11: 20824. DOI: https://doi.org/10.1038/s41598-021-00249-y

Morand, A. & Morand, J.J. 2017. Pseudomonas aeruginosa in dermatology. Annales de Dermatologie et de Vénéréologie, 144(11): 666-675. DOI: https://doi.org/10.1016/j.annder.2017.06.015

Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H. & Ullah, N. 2020. Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56: e17129. DOI: https://doi.org/10.1590/s2175-97902019000417129

Parekh, J., Karathia, N. & Chanda, S. 2006. Screening of some traditionally used medicinal plants for potential antibacterial activity. Indian Journal of Pharmaceutical Sciences, 68(6): 832 - 834. DOI: https://doi.org/10.4103/0250-474X.31031

Raji, P., Samrot, A.V., Keerthana, D. & Karishma, S. 2019. Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. Journal of Cluster Science, 30: 881-895. DOI: https://doi.org/10.1007/s10876-019-01547-2

Saeloh, D. & Visutthi, M. 2021. Efficacy of Thai plant extracts for antibacterial and anti-biofilm activities against pathogenic bacteria. Antibiotics, 10(12): 1470. DOI: https://doi.org/10.3390/antibiotics10121470

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K.M. & Yoga Latha, L. 2011. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1): 1-10. DOI: https://doi.org/10.4314/ajtcam.v8i1.60483

Satria, D., Sofyanti, E., Wulandari, P., Fajarini, Pakpahan, S.D. & Limbong, S.A. 2022. Antibacterial activity of Medan butterfly pea (Clitoria ternatea L.) corolla extract against Streptococcus mutans ATCC®25175™ and Staphylococcus aureus ATCC®6538™. Pharmacia, 69(1): 195-202. DOI: https://doi.org/10.3897/pharmacia.69.e77076

Senarathna, T.D., Mudalige, H. & Dias, S. 2021. Antibacterial activity of leaves and flowers of Clitoria ternatea (butterfly pea plant) in Sri Lanka by using different solvent extracts. Sri Lankan Journal of Infectious Diseases, 11(S2): 19. DOI: https://doi.org/10.4038/sljid.v11i0.8382

Sharmin, T., Ahmed, N., Hossain, A., Hosain, M.M., Mondal, S.C., Haque, M.R., Almas, M. & Siddik, M.A.B. 2016. Extraction of bioactive compound from some fruits and vegetables (Pomegranate peel, carrot and tomato). American Journal of Food and Nutrition, 4(1): 8-19.

Shekhar, T.C. & Anju, G. 2014. Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. American Journal of Ethnomedicine, 1(4): 244-249.

Sun, X. H., Z, T.T., Wei, C.H., Lan, W.Q., Zhao, Y., Pan, Y.J. & Wu, V.C.H. 2018. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94: 155-161. DOI: https://doi.org/10.1016/j.foodcont.2018.07.012

Tan, M.C., Tan, C.P. & Ho, C.W. 2013. Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems. International Food Research Journal, 20(6): 3117-3123.

Taufiq, M.M.J. & Darah, I. 2019. Antibacterial activity of an endophytic fungus Lasiodiplodia pseudotheobromae IBRL OS-64 residing in leaves of a medicinal herb, Ocimum sanctum Linn. Journal of Applied Biology & Biotechnology, 7(02): 35-41. DOI: https://doi.org/10.7324/JABB.2019.70207

Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G.Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3): 603-61. DOI: https://doi.org/10.1128/CMR.00134-14

Vitale, C., Ma, T.M., Sim, J., Altheim, C., Martinez-Nieves, E., Kadiyala, U., Solomon, M.J. & VanEpps, J.S. 2021. Staphylococcus epidermidis has growth phase dependent affinity for fibrinogen and resulting fibrin clot elasticity. Frontiers in Microbiology, 12: 649534. DOI: https://doi.org/10.3389/fmicb.2021.649534

Xie, Y., Yang, W., Tang, F., Chen, X. & Ren, L. 2015. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Current Medicinal Chemistry, 22: 132-149. DOI: https://doi.org/10.2174/0929867321666140916113443

Published

30-06-2023

How to Cite

Zulkamal, L. M., Zolhalim, N. A. A. ., Aris, F., Zakaria, N. A., Yusof, F. Z. M. ., Ibrahim, D., & Jalil, M. T. M. (2023). Bioactivity of Clitoria ternatea Crude Extracts Against Pathogenic Bacteria. Malaysian Applied Biology, 52(2), 41–49. https://doi.org/10.55230/mabjournal.v52i2.2542

Issue

Section

Research Articles

Funding data

Most read articles by the same author(s)