Enhanced Growth of Chili (Capsicum annuum L.) by Silicon Nutrient Application in Fertigation System



  • Suhaizan Lob Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0002-4421-9448
  • Nur Syakirah Sa'ad Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Nurul Faziha Ibrahim Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
  • Norhidayah Che Soh Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu
  • Ramisah Mohd Shah Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Muhammad Safwan Hafiz Zaudin Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia


Abiotic stress, biomass, growth performance, root application, silicon accumulation


Silicon (Si) is one of the most abundant elements naturally available in the soil. This element performs an essential function in improving plant growth. This present study was carried out to evaluate the impact of Si nutrient application on the growth performance of chili (Capsicum annuum L.). Chili plant grown using a fertigation system was subjected to manual application of a silicon nutrient solution in varying concentrations (0 ppm, 108 ppm, 180 ppm, & 360 ppm) via root application. Each treatment was replicated five times, with five plants in each replicate, and all plants were grown in a shade house. The growth performance parameters measured were the number of leaves, stem diameter, plant height, plant biomass (dry weight), and Si accumulation in the stem, leave, and chili fruit. Results showed that Si nutrient application significantly affected the growth performances of chili plants. Application of T3 (360 ppm Si nutrient) was able to produce the highest stem diameter (8.92 mm), fresh weight (129.63 g), dry weight (67.23 g), as well as Si accumulation in stem (54 ppm), and chili fruit (24 ppm). On the other hand, applications with T2 (180 ppm Si nutrient) also demonstrated the highest plant height (20.98 cm), number of leave (27), and Si accumulation in leave (87 ppm). In conclusion, the application of silicon nutrients has the potential to enhance plant growth in numerous crops, making it a beneficial supplement to traditional agricultural practices.


Download data is not yet available.


Metrics Loading ...


Al-Wasfy, M.M. 2012. Trails for improving water use efficiency and improving productivity in Williams banana orchards by spraying salicylic acid. Minia Journal of Agriculture Research and Development, 32(2): 139-160.

Al-Wasfy, M.M. 2013. Response of Sakkoti date palms to foliar application of royal jelly, silicon and vitamins B. Journal of American Science, 9(5): 315-321.

Babini, E., Marconi, S., Cozzolino, S., Ritota, M., Taglienti, A., Sequi, P. & Valentini, M. 2012. Bio-available Silicon Fertilization Effects on Strawberry Shelf-Life. In: XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Postharvest Technology in the Global Market. International Society for Horticultural Science, pp. 815-818. DOI: https://doi.org/10.17660/ActaHortic.2012.934.107

Balakhnina, T. & A. Borkowska. 2013. Effects of silicon on plant resistance to environmental stresses: Review. International Agrophysics, 27: 225-232. DOI: https://doi.org/10.2478/v10247-012-0089-4

Bélanger, R.R., Benhamou, N. & Menzies, J.G. 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology, 93: 402-412. DOI: https://doi.org/10.1094/PHYTO.2003.93.4.402

Cooke, J. & Leishman, M.R. 2011. Silicon concentration and leaf longevity: Is silicon a player in the leaf dry mass spectrum? Functional Ecology, 25(6): 1181-1188. DOI: https://doi.org/10.1111/j.1365-2435.2011.01880.x

Costa, B.N., Dias, G.D., Costa, I.D., Assis, F.A., Silveira, F.A. & Pasqual, M. 2016. Effects of silicon on the growth and genetic stability of passion fruit. Acta Scientiarum. Agronomy, 38(4): 503. DOI: https://doi.org/10.4025/actasciagron.v38i4.30939

Costa, I.J.S., Pereira, M.C.T., Mizobutsi, G.P., Maia, V.M., Silva, J.F., Oliveira, J.A.A., Oliveira, M.B., Souza, V.N.R., Nietsche, S., Santos., E.F. & Korndorfer, G.H. 2015. Influence of silicon fertilization on ’Palmer’ mango tree cultivation. Acta Horticulturae, 1075: 229-234. DOI: https://doi.org/10.17660/ActaHortic.2015.1075.26

Datnoff, L.E., Rodrigues, F.A. & Seebold, K.W. 2007. Silicon and plant disease. In: L.E. Datnoff, W.H. Elmer & D.M. Huber (Eds.). Mineral Nutrition and Plant Disease. APS Press, Saint Paul MN. pp. 233-246.

Epstein, E. & Bloom, A.J. 2005. Mineral Nutrition of Plants: Principles and Perspectives. 2nd Ed. Sinauer Associates, Sunderland.

Epstein, E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology, 155(2): 155-160. DOI: https://doi.org/10.1111/j.1744-7348.2009.00343.x

Fauteux, F., Rémus-Borel, W., Menzies, J.G. & Bélanger, R.R. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249(1): 1-6. DOI: https://doi.org/10.1016/j.femsle.2005.06.034

Galindo, F.S., Pagliari, P.H., Rodrigues, W.L., Fernandes, G.C., Boleta, E.H.M., Santini, J.M. K., Jalal, A., Buzetti, S., Lavres, J. & Filho, M.C. M.T. 2021. Silicon amendment enhances agronomic efficiency of nitrogen fertilization in maize and wheat crops under tropical conditions. Plants, 10(7): 1329. DOI: https://doi.org/10.3390/plants10071329

Gallegos-Cedillo, V.M., Diánez, F., Nájera, C. & Santos, M. 2021. Plant agronomic features can predict quality and field performance: A bibliometric analysis. Agronomy, 11(11): 2305. DOI: https://doi.org/10.3390/agronomy11112305

Helaly, M.N., El-Hoseiny, H., El-Sheery, N.I., Rastogi, A. & Kalaji, H.M. 2017. Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry, 118: 31-44. DOI: https://doi.org/10.1016/j.plaphy.2017.05.021

Hosseini, S.Z., Jelodar, N.B. & Bagheri, N. 2012. Study of silicon effects on plant growth and resistance to stem borer in rice. Communications in Soil Science and Plant Analysis, 43(21): 2744-2751. DOI: https://doi.org/10.1080/00103624.2012.719972

Hu, J., Gettel, G., Fan, Z., Lv, H., Zhao, Y., Yu, Y., Wang, J., Butterbach-Bahl, K., Li, G. & Lin, S. 2021. Drip fertigation promotes water and nitrogen use efficiency and yield stability through improved root growth for tomatoes in plastic greenhouse production. Agriculture, Ecosystems & Environment, 313: 107379. DOI: https://doi.org/10.1016/j.agee.2021.107379

Hunt, R., Thomas, B., Murphy, D.J. & Murray, D. 2003. Growth analysis, individual plants. Encyclopedia of applied plant sciences, 2: 579-588. DOI: https://doi.org/10.1016/B0-12-227050-9/00028-4

Isbell, H. 2021. Why your plants need more Silica. Maximum Yield. URL http://www.maximumyield.com/simply-silica/2/1077 (accessed 12.04.2022)

Jayawardana, H.A.R.K., Weerahewa, H.L.D. & Saparamadu, M.D.J.S. 2014. Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Tropical Agricultural Research, 26 (1): 74 - 81. DOI: https://doi.org/10.4038/tar.v26i1.8073

Kaluwa, K., Bertling, I., Bower, J.P. & Tesfay, S.Z. 2010. Silicon application effects on ’Hass’ avocado fruit physiology. South African Avocado Growers’ Association Yearbook, 33: 44-47.

Kapoor, R., Kumar, A., Sandal, S.K., Sharma, A., Raina, R. & Thakur, K.S. 2022. Water and nutrient economy in vegetable crops through drip fertigation and mulching techniques: a review. Journal of Plant Nutrition, 45(15): 2389-2403. DOI: https://doi.org/10.1080/01904167.2022.2063742

Laane, H.M. 2018. The effects of foliar sprays with different silicon compounds. Plants, 7(2): 45. DOI: https://doi.org/10.3390/plants7020045

Liang, Y., Hua, H., Zhu, Y.G., Zhang, J., Cheng, C. & Römheld, V. 2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist, 172(1): 63-72. DOI: https://doi.org/10.1111/j.1469-8137.2006.01797.x

Liang, Y.C., Sun, W.C., Si, J. & Romheld, V. 2005. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology, 54: 678 - 85. DOI: https://doi.org/10.1111/j.1365-3059.2005.01246.x

Liu, J.M., Han, C., Sheng, X.B., Liu, S.K. & Qi, X. 2011. Potassium-containing silicate fertilizer: its manufacturing technology and agronomic effects. In: 5th International Conference on Si Agriculature. pp. 13-18.

Lucas, W.J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S.R., Helariutta, Y., He. X-Q., Fukuda, H., Kang, J., Brady, S.M., Patrick, J.W., Sperry, J., Yoshida, A., López-Millán, A-F., Grusak, M.A. & Kachroo, P. 2013. The plant vascular system: Evolution, development and functions f. Journal of Integrative Plant Biology, 55(4): 294-388. DOI: https://doi.org/10.1111/jipb.12041

Ma, J.F. & Takahashi, E. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam, The Netherlands. 294 pp. DOI: https://doi.org/10.1016/B978-044451166-9/50009-9

Ma, J.F. and Yamaji, N. 2008. Functions and transport of silicon in plants. Cellular and Molecular Life Science, 65: 3049-3057. DOI: https://doi.org/10.1007/s00018-008-7580-x

Ma, J.F. & Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8): 392-397. DOI: https://doi.org/10.1016/j.tplants.2006.06.007

Magaña-López, E., Palos-Barba, V., Zuverza-Mena, N., Vázquez-Hernández, M.C., White, J.C., Nava-Mendoza, R., Feregrino-Pérez, A.A., Torres-Pacheco, I. & Guevara-González, R.G. 2022. Nanostructured mesoporous silica materials induce hormesis on chili pepper (Capsicum annuum L.) under greenhouse conditions. Heliyon, 8(3): e09049. DOI: https://doi.org/10.1016/j.heliyon.2022.e09049

Marais, L.J. 2015. Efficacy of water-soluble silicon in managing Fusarium dry root rot of citrus. Acta Horticulturae, 1065: 993-1000. DOI: https://doi.org/10.17660/ActaHortic.2015.1065.124

Mohd, Y.S., Arshad, A.M., Muhammad, N.F. & Sidek, N.J. 2016. Potential and Viability of Chilli Cultivation using Fertigation Technology in Malaysia. International Journal of Innovation and Applied Studies, 17(4): 1114-1119.

Nikolic, M., Nikolic, N., Liang, Y., Kirkby, E.A. & Römheld, V. 2007. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiology, 143: 495-503. DOI: https://doi.org/10.1104/pp.106.090845

Norhasanah. 2012. Response growth and yield of chili (Capsicum frutescens Linn.) Cakra green variety to husk ash paddy on swampy marshland. Agroscientiea, 19(1): 1-5.

Rea, R.S., Islam, M.R., Rahman, M.M., Nath, B. & Mix, K. 2022. Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: A review. Sustainability, 14(8): 4525. DOI: https://doi.org/10.3390/su14084525

Sarto, M.V.M., do Carmo Lana, M., Rampim, L., Sérgio Rosset, J., Rocha Wobeto, J., Ecco, M., Bassegio, D. & Ferreira da Costa, P. 2014. Effect of silicate on nutrition and yield of wheat. African journal of Agricultural Research, 9(11): 956-962. DOI: https://doi.org/10.5897/AJAR2013.7617

Sudradjat, Afifah, F.J. & Eko, S. 2016. Studies on the effects of silicon and antitranspirant on chili pepper (Capsicum annuum L.) Growth And Yield. European Journal of Scientific Research, 137(1): 5-10.

Sukkaew, E., Amkha, S., Inboonchoy, T. & Mala, T. 2016. Utilization of silicon fertilizer application on pepper seedling production. Modern Applied Science, 10(11): 264-272. DOI: https://doi.org/10.5539/mas.v10n11p264

Tayade, R., Ghimire, A., Khan, W., Lay, L., Attipoe, J.Q. & Kim, Y. 2022. Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules, 12(8): 1027. DOI: https://doi.org/10.3390/biom12081027

Tominaga, J. & Kawamitsu, Y. 2015.Cuticle affects calculations of internal CO2 in leaves closing their stomata. Plant and Cell Physiology, 56(10): 1900-1908. DOI: https://doi.org/10.1093/pcp/pcv109

Xu, J., Guo, L. & Liu, L. 2022. Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism. Environmental and Experimental Botany, 201: 104974. DOI: https://doi.org/10.1016/j.envexpbot.2022.104974

Yan, G.C., Nikolic, M., Ye, M.J., Xiao, Z.X. & Liang, Y.C. 2018. Silicon acquisition and accumulation in plant and its significance for agriculture. Journal of Integrative Agriculture, 17(10): 2138-2150. DOI: https://doi.org/10.1016/S2095-3119(18)62037-4

Yoshida, S., Ohnishi, Y. & Kitagishi, K. 1962. Chemical forms, mobility, and deposition in the rice plant. Soil Science and Plant Nutrition, 8: 107-113. DOI: https://doi.org/10.1080/00380768.1962.10430992

Zhang, K., Rossi, C., Tenailleau, C., Alphonse, P. & Chane-Ching, J. Y. 2007. Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology, 18(27): 275607. DOI: https://doi.org/10.1088/0957-4484/18/27/275607

Zhang, J., Zou, W., Li, Y., Feng, Y., Zhang, H., Wu, Z., Tu, Y., Wang, Y., Cai, X. & Peng, L. 2015. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science, 239: 84-91. DOI: https://doi.org/10.1016/j.plantsci.2015.07.014



How to Cite

Lob, S., Sa’ad, N. S., Ibrahim, N. F., Che Soh, N., Mohd Shah, R., & Zaudin, M. S. H. . (2023). Enhanced Growth of Chili (Capsicum annuum L.) by Silicon Nutrient Application in Fertigation System. Malaysian Applied Biology, 52(2), 13–19. https://doi.org/10.55230/mabjournal.v52i2.2648



Research Articles

Funding data