Constitutive Expression of Cyclotide kalata B1 Gene in Transgenic Rice Conferring Resistance to Golden Apple Snail (Pomacea canaliculata)

https://doi.org/10.55230/mabjournal.v52i3.2670

Authors

  • Norsharina Md Saad Department of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia; Plant Biotechnology Centre, Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia, Jalan Bioteknologi, 43400 Serdang, Selangor, Malaysia
  • Chee How Teo Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
  • Zuraida Ab Rahman Biotechnology & Nanotechnology Research Centre, MARDI Headquarters, MARDI HQ, Persiaran MARDIUPM, 43400 Serdang, Selangor, Malaysia
  • Zamri Zainal Department of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600 Bangi, Selangor, Malaysia

Keywords:

Cyclotide kalata B1, golden apple snail, rice transformation

Abstract

The golden apple snail, also known as Siput Gondang Emas in Malaysia, is a serious pest of paddy fields and native aquatic plants throughout Southeast Asia. Agrobacterium-mediated transformation was used to transform a synthetic Oak 1 gene encoding kalata B1 (kB1), which is toxic to golden apple snails, into Malaysian indica rice MR219. The synthetic Oak 1 gene was placed under the control of a strong constitutive Zea mays ubiquitin promoter. Twelve transgenic lines containing the Oak 1 gene were obtained from the regenerated calli selected on hygromycin. Oak 1 gene expression was determined using quantitative reverse transcriptase- PCR (RT-qPCR). The resistance of the transgenic line to snail infestation was evaluated by feeding experiments. One dimensional 1H nuclear magnetic resonance (NMR) spectroscopy revealed that the kB1 produced in transgenic rice is in the form of an acyclic peptide. Phenotypic analysis of the transgenic plants revealed that they have fewer leaves and grains than wild-type MR219. In a molluscicidal activity bioassay, feeding juvenile snails with different concentrations of leaf extracts resulted in molluscicidal activity against snails that was comparable to the synthetic molluscicide metaldehyde, thus farmers can overcome the golden apple snail infestation problem by using genetically modified rice containing the kB1-encoding gene. This technology also has the potential to reduce the toxic effects of chemically synthesized molluscicides on the environment and ecosystem.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Akama, K., Akter, N., Endo, H., Kanesaki, M., Endo, M. & Toki, S. 2020. An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains. Rice, 13(20): 1-12. DOI: https://doi.org/10.1186/s12284-020-00380-w

Akama, K. & Takaiwa, F. 2007. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. Journal of Experimental Botany, 58(10): 2699-2707. DOI: https://doi.org/10.1093/jxb/erm120

Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Rech, P. & Chriqui, D. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, 57(4): 626-644. DOI: https://doi.org/10.1111/j.1365-313X.2008.03715.x

Azhakanandam, K., McCabe, M.S., Power, J.B., Lowe, K.C., Cocking, E.C. & Davey, M. R. 2000. T-DNA transfer, integration expression and inheritatance in rice: Effects of plant genotype and agrobacterium super-virulence. Journal of Plant Physiology, 157(4): 429-439. DOI: https://doi.org/10.1016/S0176-1617(00)80028-0

Azizoglu, U., Jouzani, G. S., Yilmaz, N., Baz, E. & Ozkok, D. 2020. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. Science of the Total Environment, 734: 139169. DOI: https://doi.org/10.1016/j.scitotenv.2020.139169

Bajaj, S., Ran, Y., Phillips, J., Kularajathevan, G., Pal, S., Cohen, D., Elborough, K. & Puthigae, S. 2006. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.). Plant Cell Reports, 25(7): 651-659. DOI: https://doi.org/10.1007/s00299-005-0099-9

Barbeta, B.L., Marshall, A.T., Gillon, A.D., Craik, D.J. & Anderson, M.A., 2008. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proceedings of the National Academy of Sciences, 105(4): 1221-1225. DOI: https://doi.org/10.1073/pnas.0710338104

Camarero, J.A. 2017. Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorganic and Medicinal Chemistry Letters, 27(23): 5089-5099. DOI: https://doi.org/10.1016/j.bmcl.2017.10.051

Chen, Y., Sun, X., Zhou, X., Hebelstrup, K.H., Blennow, A. & Bao, J. 2017. Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene. Scientific Reports, 7(1): 3339. DOI: https://doi.org/10.1038/s41598-017-03637-5

Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X., & Armstrong, C. L. 2004. Invited review: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In vitro cellular and developmental biology - Plant, 40(1), 31-45. DOI: https://doi.org/10.1079/IVP2003501

Craik, D.J. 2012. Host-defense activities of cyclotides. Toxins, 4: 139-156. DOI: https://doi.org/10.3390/toxins4020139

Craik, D.J., Daly, N. L., Bond, T. & Waine, C. 1999. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. Journal of Molecular Biology, 294(5): 1327-1336. DOI: https://doi.org/10.1006/jmbi.1999.3383

De Veer, S.J., Kan, M.W. & Craik, D.J. 2019. Cyclotides: From Structure to Function. Chemical Reviews, 119(24): 12375-12421. DOI: https://doi.org/10.1021/acs.chemrev.9b00402

Department of Agriculture. 2021. Booklet Statistic Tanaman (Sub-sektor Tanaman Makanan) 2021. Jabatan Pertananian Semenanjung Malaysia, Putrajaya.

Duke, S.O., Cantrell, C.L., Meepagala, K.M., Wedge, D.E., Tabanca, N. & Schrader, K.K. 2010. Natural toxins for use in pest management. Toxins, 2(8): 1943-1962. DOI: https://doi.org/10.3390/toxins2081943

FAO. 2017. The Future of Food and Agriculture and Challenges.

Fehér, A. 2019. Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology? Frontiers in Plant Science, 10: 536. DOI: https://doi.org/10.3389/fpls.2019.00536

Fuad, M., Junaidi, A. B., Habibah, A., Hamzah, J., Toriman, M.E., Lyndon, N., Selvadurai, S. & Azima, A.M. 2012. The impact of pesticides on paddy farmers and ecosystem. Advances in Natural and Applied Sciences, 6(1): 65-70.

Gillon, A.D., Saska, I., Jennings, C.V., Guarino, R.F., Craik, D.J. & Anderson, M.A. 2008. Biosynthesis of circular proteins in plants. Plant Journal, 53(3): 505-515. DOI: https://doi.org/10.1111/j.1365-313X.2007.03357.x

Gran, L. 1973. On the effect of a polypeptide isolated from “Kalata-Kalata”(Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacologica et Toxicologica, 33(5-6): 400-408. DOI: https://doi.org/10.1111/j.1600-0773.1973.tb01541.x

Grover, T., Mishra, R., Bushra, Gulati, P. & Mohanty, A. 2021. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics. Peptides, 135: 170430. DOI: https://doi.org/10.1016/j.peptides.2020.170430

Gründemann, C., Stenberg, K.G. & Gruber, C.W. 2019. T20K : An immunomodulatory cyclotide on its way to the clinic. International Journal of Peptide Research and Therapeutics, 25: 9-13. DOI: https://doi.org/10.1007/s10989-018-9701-1

Handley, T.N., Wang, C.K., Harvey, P.J., Lawrence, N. & Craik, D.J. 2020. Cyclotide structures revealed by NMR, with a little help from X-ray crystallography. ChemBioChem, 21(24): 3463-3475. DOI: https://doi.org/10.1002/cbic.202000315

Hiei, Y. & Komari, T. 2006. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 85(3): 271-283. DOI: https://doi.org/10.1007/s11240-005-9069-8

Horgan, F.G. 2018. The ecophysiology of apple snails in rice: implications for crop management and policy. Annals of Applied Biology, 172(3): 245-267. DOI: https://doi.org/10.1111/aab.12424

Jackson, M.A. & Gilding, E.K. 2015. Cyclotides in a biotechnological context: Opportunities and challenges. Advances in Botanical Research, 76: 305-333. DOI: https://doi.org/10.1016/bs.abr.2015.09.010

Keov, P., Liutkevičiūtė, Z., Hellinger, R., Clark, R.J. & Gruber, C.W. 2018. Discovery of peptide probes to modulate oxytocin-type receptors of insects. Scientific Reports, 8: 10020. DOI: https://doi.org/10.1038/s41598-018-28380-3

Kooter, J.M., Matzke, M.A. & Meyer, P. 1999. Listening to the silent genes: Transgene silencing, gene regulation and pathogen control. Trends Plant Science, 4: 340–347. DOI: https://doi.org/10.1016/S1360-1385(99)01467-3

Kumar, D., Das, P.K. & Sarmah, B.K. 2018. Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. Journal of Applied Genetics, 59(4): 419-430. DOI: https://doi.org/10.1007/s13353-018-0466-1

Lim, Y.Y. & Lai, K.S. 2017. Generation of transgenic rice expressing cyclotide precursor Oldenlandia affinis kalata B1 protein. Journal of Animal and Plant Sciences, 27(2): 667-671.

Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402-408. DOI: https://doi.org/10.1006/meth.2001.1262

Lobell, D.B., Burke, M.B., Tebaldi, C., Mastrandrea, M.D., Falcon, W.P. & Naylor, R.L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863): 607-610. DOI: https://doi.org/10.1126/science.1152339

Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., Wang, L., Ryan, L., Khan, T., Chow-Yiu, J., Hua, W., Yu, M., Banh, J., Bao, Z., Brink, K. & Gordon-Kamm, W. 2016. Morphogenic regulators baby boom and Wuschel improve monocot transformation. Plant Cell, 28: 1998–2015. DOI: https://doi.org/10.1105/tpc.16.00124

Maren, N.A., Duan, H., Da, K., Yencho, G.C., Ranney, T.G. & Liu, W. 2022. Genotype-independent plant transformation. Horticulture Research, 9: hac047. DOI: https://doi.org/10.1093/hr/uhac047

Maheshwari, P. & Kovalchuk, I. 2016. Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Frontiers in Plant Science, 7: 296. DOI: https://doi.org/10.3389/fpls.2016.00296

Malone, L.A., Burgess, E.P.J., Gatehouse, H.S., Voisey, C.R., Tregidga, E.L. & Philip, B.A. 2001. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie, 32(1): 57-68. DOI: https://doi.org/10.1051/apido:2001111

Matzke, A.J. & Matzke, M.A. 1998. Position effects and epigenetic silencing of plant transgenes. Current Opinion Plant Biology, 1: 142–148. DOI: https://doi.org/10.1016/S1369-5266(98)80016-2

Mazlan, A.Z., Hussain, H. & Mohamed Zawawi, M.A. 2018. Potential dermal exposure assessment of farmers to herbicide imazapic in an agriculture area. Asian Journal of Quality of Life, 3(11): 113-113. DOI: https://doi.org/10.21834/ajqol.v3i11.127

Mochida, O. 1991. Spread of freshwater Pomacea snails (Pilidae, Mollusca) from Argentina to Asia. Micronesica Suppl., 3: 51-62.

Nagel, R., Elliott, A., Masel, A., Birch, R.G. & Manners, J.M. 1990. Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. FEMS Microbiology Letters, 67(3): 325-328. DOI: https://doi.org/10.1111/j.1574-6968.1990.tb04041.x

Narayani, M., Babu, R., Chadha, A. & Srivastava, S. 2020. Production of bioactive cyclotides: A comprehensive overview. Volume 9. Springer Netherlands. DOI: https://doi.org/10.1007/s11101-020-09682-9

Nagaya, S., Kato, K., Ninomiya, Y., Horie, R., Sekine, M., Yoshida, K. & Shinmyo, A. 2005. Expression of randomly integrated single complete copy transgenes does not vary in Arabidopsis thaliana. Plant Cell Physiology, 46: 438-444. DOI: https://doi.org/10.1093/pcp/pci039

Nguyen, G.K.T., Lian, Y., Pang, E.W.H., Nguyen, P.Q.T., Tran, T.D. & Tam, J.P. 2013. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. Journal of Biological Chemistry, 288(5): 3370-3380. DOI: https://doi.org/10.1074/jbc.M112.415356

Plan, M.R.R., Saska, I., Caguan, A.G. & Caraik, D.J. 2008. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (Golden Apple Snail ). Journal of Agricultural and Food Chemistry, 56: 5237-5241. DOI: https://doi.org/10.1021/jf800302f

Poon, S., Harris, K.S., Jackson, M.A., McCorkelle, O.C., Gilding, E.K., Durek, T., Van Der Weerden, N.L., Craik, D.J. & Anderson, M.A. 2018. Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. Journal of Experimental Botany, 69(3): 633-641. DOI: https://doi.org/10.1093/jxb/erx422

Prabhakaran, G., Bhore, S. & Ravichandran, M. 2017. Development and evaluation of poly herbal molluscicidal extracts for control of Apple Snail (Pomacea maculata). Agriculture, 7(3): 22-22. DOI: https://doi.org/10.3390/agriculture7030022

Qu, H., Jackson, M.A., Yap, K., Harvey, P.J., Gilding, E.K. & Craik, D.J. 2020. Production of a structurally validated cyclotide in rice suspension cells is enabled by a supporting biosynthetic enzyme. Planta, 252: 97. DOI: https://doi.org/10.1007/s00425-020-03505-z

Rahman, Z.A., Roowi, S., Zaliha, W. & Subramaniam, S. 2010. Regeneration of Malaysian indica rice (Oryza sativa) variety MR232 via optimised somatic embryogenesis system. Journal of Phytology, 2(23): 30-38.

Rashid, H., Yokoi, S., Toriyama, K. & Hinata, K. 1996. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Reports, 15: 727-730. DOI: https://doi.org/10.1007/BF00232216

Ratanasut, K., Rod-In, W. & Sujipuli, K. 2017. In planta Agrobacterium-mediated transformation of rice. Rice Science, 24(3): 181-186. DOI: https://doi.org/10.1016/j.rsci.2016.11.001

Rehm, F.B.H., Jackson, M.A., De Geyter, E., Yap, K., Gilding, E.K., Durek, T. & Craik, D.J. 2019. Papainlike cysteine proteases prepare plant cyclic peptide precursors for cyclization. Proceedings of the National Academy of Sciences of the United States of America, 116(16): 7831-7836. DOI: https://doi.org/10.1073/pnas.1901807116

Repalli, S.K., Geda, C., Nsn, P. & Gjn, R. 2017. Regeneration Enhancement in tissue culture of indica rice’s through partial desiccation and chemical supplements. Journal of Plant Biochemistry & Physiology, 5(03): 229-238. DOI: https://doi.org/10.4172/2329-9029.1000196

Sahoo, K.K., Tripathi, A.K., Pareek, A., Sopory, S.K. & Singla-Pareek, S.L. 2011. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 7: 49. DOI: https://doi.org/10.1186/1746-4811-7-49

Saini, R.K., Shetty, N.P., Giridhar, P. & Ravishankar, G.A. 2012. Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech, 2(3): 187-192. DOI: https://doi.org/10.1007/s13205-012-0045-9

Saroj, K.S., Amandeep, K., Gurwinder, K. & Gurvinder, S.C. 2015. Genetic transformation of rice: Problems, progress and prospects. Rice Research: Open Access, 3: 132.

Saska, I., Gillon, A.D., Hatsugai, N., Dietzgen, R.G., Hara-nishimura, I., Anderson, M.A. & Craik, D. J. 2007. An asparaginyl endopeptidase mediates in vivo protein. Journal of Biological Chemistry, 282(40): 29721-29728. DOI: https://doi.org/10.1074/jbc.M705185200

Selker, E.U.1999. Gene silencing: repeats that count. Cell, 97: 157–160. DOI: https://doi.org/10.1016/S0092-8674(00)80725-4

Simonsen, S.M., Daly, N.L. & Craik, D.J. 2004. Capped acyclic permutants of the circular protein kalata B1. FEBS Letters, 577(3): 399-402. DOI: https://doi.org/10.1016/j.febslet.2004.10.034

Slazak, B., Jędrzejska, A., Badyra, B., Sybilska, A., Lewandowski, M., Kozak, M., Kapusta, M., Shariatgorji, R., Nilsson, A., Andrén, P.E., Göransson, U. & Kiełkiewicz, M. 2022. The involvement of cyclotides in mutual interactions of violets and the two-spotted spider mite. Scientific Reports, 12: 1914. DOI: https://doi.org/10.1038/s41598-022-05461-y

Tammineni, R., Gulati, P., Kumar, S. & Mohanty, A. 2020. An overview of acyclotides: Past, present and future. Phytochemistry, 170: 112215. DOI: https://doi.org/10.1016/j.phytochem.2019.112215

Triebskorn, R., Christensen, K. & HEIM, G. 1998. Effects of orally and dermally applied metaldehyde on mucus cells of slugs (Deroceras reticulatum) depending on temperature and duration of exposure. Journal of Molluscan Studies, 64(4): 467-487. DOI: https://doi.org/10.1093/mollus/64.4.467

Weidmann, J. & Craik, D.J. 2016. Discovery, structure, function, and applications of cyclotides: Circular proteins from plants. Journal of Experimental Botany, 67(16): 4801-4812. DOI: https://doi.org/10.1093/jxb/erw210

Xing, S.C., Li, F., Guo, Q.F., Liu. D.R., Zhao, X.X. & Wang. W. 2009. The involvement of an expansin geneTaEXPB23 from wheat in regulating plant cell growth. Biologica Plant, 53: 429–434. DOI: https://doi.org/10.1007/s10535-009-0082-3

Yaqoob, U., Kaul, T. & Nawchoo, I. A. 2017. Development of an efficient protocol for Agrobacterium mediated transformation of some recalcitrant indica rice varieties. Indian Journal of Plant Physiology, 22(3): 346-353. DOI: https://doi.org/10.1007/s40502-017-0304-1

Yinxia, Z. & Te-Chato, S. 2015. Optimization of certain parameters for transformation of indica rice Hom Kra Dang Ngah variety via Agrobacterium-mediated transformation. Kasetsart Journal - Natural Science, 49(5): 676-686.

Zhao, W., Zheng, S. & Ling, H.Q. 2011. An efficient regeneration system and Agrobacterium-mediated transformation of Chinese upland rice cultivar Handao297. Plant Cell, Tissue and Organ Culture, 106(3): 475-483. DOI: https://doi.org/10.1007/s11240-011-9946-2

Published

30-09-2023

How to Cite

Md Saad, N., Teo, C. H., Rahman, Z. A. ., & Zainal, Z. (2023). Constitutive Expression of Cyclotide kalata B1 Gene in Transgenic Rice Conferring Resistance to Golden Apple Snail (Pomacea canaliculata). Malaysian Applied Biology, 52(3), 59–72. https://doi.org/10.55230/mabjournal.v52i3.2670

Issue

Section

Research Articles