Effects of Hormonal Regulation on Cell Number and Cell Size in Determining Fruit Size: A Mini-Review
Keywords:
cell division, cell expansion, fruit development, fruit size, plant hormones, ripeningAbstract
Fruits are sold by weight, and hence, fruit size is a central indicator of fruit yield and quality. In horticultural industries, fruit growers and researchers continually search for and improve cultivation methods to enhance fruit size. By providing a fundamental understanding of how fruit size is regulated in plants, the process of cell number production followed by the increase of cell size has been widely studied. Molecular and cellular approaches provide direction to both scientists and breeders in fruit quality enhancement. This mini-review discussed the interplay among major plant hormones in regulating cell number production and cell size in horticultural plants. We focused on hormones that are mainly involved in determining cell proliferation and cell size and on their interaction during genetic regulation and their signaling pathways, which in turn, influence final fruit size. We also deliberated the current findings around this research niche at cellular and molecular levels. This will ultimately assist breeders in improving the fruit quality, and yield and increase profit.
Downloads
Metrics
References
Abdulraheem, M.I., Xiong, Y., Moshood, A.Y., Cadenas-Pliego, G., Zhang, H. & Hu, J. 2024. Mechanisms of plant epigenetic regulation in response to plant stress: Recent discoveries and implications. Plants, 13(2): 163. DOI: https://doi.org/10.3390/plants13020163
Abel, S. & Theologis, A. 1996. Early genes and auxin action. Plant Physiology, 111: 9. DOI: https://doi.org/10.1104/pp.111.1.9
Anastasiou, E. & Lenhard, M. 2008. Control of plant organ size. In: Plant Growth Signaling. L. Bogre & G. Beemster (Eds.). Springer-Verlag, Berlin. pp. 25-45. DOI: https://doi.org/10.1007/7089_2007_149
Asahina, M., Iwai, H., Kikuchi, A., Yamaguchi, S., Kamiya, Y., Kamada, H. & Satoh, S. 2002. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiology, 129 (1): 201-210. DOI: https://doi.org/10.1104/pp.010886
Atighi, M.R., Verstraeten, B., De Meyer, T. & Kyndt, T. 2020. Genome‐wide DNA hypomethylation shapes nematode pattern‐triggered immunity in plants. New Phytologist, 227(2): 545-558. DOI: https://doi.org/10.1111/nph.16532
Bain, J.M. & Robertson, R.N. 1951. The physiology of growth in apple fruits. I. Cell size, cell number, and fruit development. Australian Journal of Scientific Research Series B: Biological Sciences, 4: 75. DOI: https://doi.org/10.1071/BI9510075
Bajguz, A. & Tretyn, A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62: 1027-1046. DOI: https://doi.org/10.1016/S0031-9422(02)00656-8
Baranov, D., Dolgov, S. & Timerbaev, V. 2024. New advances in the study of regulation of tomato flowering-related genes using biotechnological approaches. Plants, 13(3): 359. DOI: https://doi.org/10.3390/plants13030359
Bender, J. 2002. Plant epigenetics. Current Biology, 12(12): R412-R414. DOI: https://doi.org/10.1016/S0960-9822(02)00910-7
Bertin, N., Genard, M. & Fishman, S. 2003. A model for an early stage of tomato fruit development: cell multiplication and cessation of the cell proliferative activity. Annals of Botany, 92: 65-72. DOI: https://doi.org/10.1093/aob/mcg111
Blázquez, M.A., Nelson, D.C. & Weijers, D. 2020. Evolution of plant hormone response pathways. Annual Review of Plant Biology, 71: 327-353. DOI: https://doi.org/10.1146/annurev-arplant-050718-100309
Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H.L., Macfarlan, T.S. Mager, D.L. & Feschotte, C. 2018. Ten things you should know about transposable elements. Genome Biology, 19: 199. DOI: https://doi.org/10.1186/s13059-018-1577-z
Bouyer, D., Kramdi, A., Kassam, M., Heese, M., Schnittger, A., Roudier, F. & Colot, V. 2017. DNA methylation dynamics during early plant life. Genome Biology, 18(1): 1-12. DOI: https://doi.org/10.1186/s13059-017-1313-0
Cao, S., Sawettalake, N., Li, P., Fan, S. & Shen, L. 2024. DNA methylation variations underlie lettuce domestication and divergence. Genome Biology, 25(1): 158. DOI: https://doi.org/10.1186/s13059-024-03310-x
Causier, B., Ashworth, M., Guo, W. & Davies, B. 2012. The TOPLESS Interactome: A framework for gene repression in Arabidopsis. Plant Physiology, 158: 423-438. DOI: https://doi.org/10.1104/pp.111.186999
Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y. & Voytas, D.F. 2015. High-frequency, precise modification of the tomato genome. Genome Biology, 16(1): 1-15. DOI: https://doi.org/10.1186/s13059-015-0796-9
Cerri, M., Rosati, A., Famiani, F. & Reale, L., 2019. Fruit size in different plum species (genus Prunus L.) is determined by post-bloom developmental processes and not by ovary characteristics at anthesis. Scientia Horticulturae, 255: 1-7. DOI: https://doi.org/10.1016/j.scienta.2019.04.064
Chai, Y. mao., Zhang, Q., Tian, L., Li, C.L., Xing, Y., Qin, L. & Shen, Y.Y. 2013. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regulation, 69(1): 63-69. DOI: https://doi.org/10.1007/s10725-012-9747-6
Chen, J.G., Ullah, H., Young, J.C., Sussman, M.R. & Jones, A.M. 2001. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes and Development, 15(7): 902-11. DOI: https://doi.org/10.1101/gad.866201
Cheniclet, C., Rong, W.Y., Causse, M., Frangne, N., Bolling, L., Bordeaux, V.S. & Ornon, V. 2005. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiology, 139: 1984-1994. DOI: https://doi.org/10.1104/pp.105.068767
Chevalier, C., Bourdon, M., Pirrello, J., Cheniclet, C., Gévaudant, F. & Frangne, N. 2014. Endoreduplication and fruit growth in tomato: Evidence in favour of the karyoplasmic ratio theory. Journal of Experimental Botany, 65(10): 2731-2746. DOI: https://doi.org/10.1093/jxb/ert366
Choi, J.Y. & Lee, Y.C.G. 2020. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements. PLoS Genetics, 16(7): e1008872. DOI: https://doi.org/10.1371/journal.pgen.1008872
Clouse, S.D. & Sasse, J.M. 1998. Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Biology, 49(1): 427-451. DOI: https://doi.org/10.1146/annurev.arplant.49.1.427
Clouse, S.D. 2002. Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell, 14(9): 1995-2000. DOI: https://doi.org/10.1105/tpc.140930
Clouse, S.D. 2011. Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23(4): 1219-1230. DOI: https://doi.org/10.1105/tpc.111.084475
Cui, N., Chen, X., Shi, Y., Chi, M., Hu, J., Lai, K., Wang, Z. & Wang, H. 2021. Changes in the epigenome and transcriptome of rice in response to Magnaporthe oryzae infection. The Crop Journal, 9(4): 843-853. DOI: https://doi.org/10.1016/j.cj.2020.10.002
Damayanti, F., Lombardo, F., Masuda, J. I., Shinozaki, Y., Ichino, T., Hoshikawa, K., Okabe, Y., Wang, N., Fukuda, N., Ariizumi, T. & Ezura, H. 2019. Functional disruption of the tomato putative ortholog of HAWAIIAN SKIRT results in facultative parthenocarpy, reduced fertility and leaf morphological defects. Frontiers in Plant Science, 10: 1234. DOI: https://doi.org/10.3389/fpls.2019.01234
Dash, M. & Malladi, A. 2012. The AINTEGUMENTA genes, MdANT1 and MdANT2, are associated with the regulation of cell production during fruit growth in apple (Malus × domestica Borkh.). BMC Plant Biology, 12: 98. DOI: https://doi.org/10.1186/1471-2229-12-98
Dash, M., Johnson, L.K. & Malladi, A. 2013. Reduction of fruit load affects early fruit growth in apple by enhancing carbohydrate availability, altering the expression of cell production-related genes, and increasing cell production. Journal of American Society of Horticultural Science, 138: 253-262. DOI: https://doi.org/10.21273/JASHS.138.4.253
David, K.M., Couch, D., Braun, N., Brown, S., Grosclaude, J. & Perrot-Rechenmann, C. 2007. The Auxin-Binding Protein 1 is essential for the control of cell cycle. Plant Journal, 50(2): 197-206. DOI: https://doi.org/10.1111/j.1365-313X.2007.03038.x
Davies, P.J. 2010. The plant hormones: Their nature, occurrence, and functions. In: Plant Hormones. P.J. Davies (Ed.). Springer, Dordrecht. pp. 1-15. DOI: https://doi.org/10.1007/978-1-4020-2686-7_1
De Jong, M., Mariani, C. & Vriezen, W.H. 2009a. The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60: 1523-1532. DOI: https://doi.org/10.1093/jxb/erp094
De Jong, M., Wolters-Arts, M., Feron, R., Mariani, C. & Vriezen, W.H. 2009b. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. The Plant Journal, 57: 160-170. DOI: https://doi.org/10.1111/j.1365-313X.2008.03671.x
De Jong, M., Wolters-Arts, M., García-Martínez, J.L., Mariani, C. & Vriezen, W.H. 2011. The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. Journal of Experimental Botany, 62: 617-626. DOI: https://doi.org/10.1093/jxb/erq293
den Boer, B.G. & Murray, J.A. 2000. Triggering the cell cycle in plants. Trends in Cell Biology, 10: 245-250. DOI: https://doi.org/10.1016/S0962-8924(00)01765-7
Denne, M.P. 1963. Fruit development and some tree factors. New Zealand Journal of Botany, 1: 265-294. DOI: https://doi.org/10.1080/0028825X.1963.10428999
Devoghalaere, F., Doucen, T., Guitton, B., Keeling, J., Payne, W., Ling, T.J., Ross, J.J., Hallet, I.C., Gunaseelan, K., Dayatilake, G.A., Diak, R., Breen, K.C., Tustin, D.S., Costes, E., Chagné, D. Schaffer, R.J. & David, K.M. 2012. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biology, 12: 7. DOI: https://doi.org/10.1186/1471-2229-12-7
Doonan, J.H. & Sablowski, R. 2010. Walls around tumours-why plants do not develop cancer. Nature Reviews Cancer, 10: 794-802. DOI: https://doi.org/10.1038/nrc2942
Drosou, V., Kapazoglou, A., Letsiou, S., Tsaftaris, A.S. & Argiriou, A. 2021. Drought induces variation in the DNA methylation status of the barley HvDME promoter. Journal of plant Research, 134(6): 1351-1362. DOI: https://doi.org/10.1007/s10265-021-01342-z
Elsherbiny, E.A., Amin, B.H., Aleem, B., Kingsley, K.L. & Bennett, J.W. 2020. Trichoderma volatile organic compounds as a biofumigation tool against late blight pathogen Phytophthora infestans in postharvest Potato tubers. Journal of Agricultural and Food Chemistry, 68(31): 8163-8171. DOI: https://doi.org/10.1021/acs.jafc.0c03150
Feng, L., Li, G., He, Z., Han, W., Sun, J., Huang, F., Di, J. & Chen, Y. 2019. The ARF, GH3, and Aux/IAA gene families in castor bean (Ricinus communis L.): Genome-wide identification and expression profiles in high-stalk and dwarf strains. Industrial Crops and Products, 141: 111804. DOI: https://doi.org/10.1016/j.indcrop.2019.111804
Fenn, M.A. & Giovannoni, J.J. 2021. Phytohormones in fruit development and maturation. The Plant Journal, 105(2): 446-458. DOI: https://doi.org/10.1111/tpj.15112
Fesenko, I., Spechenkova, N., Mamaeva, A., Makhotenko, A.V., Love, A.J., Kalinina, N.O. & Taliansky, M. 2021. Role of the methionine cycle in the temperature-sensitive responses of potato plants to potato virus Y. Molecular Plant Pathology, 22(1): 77-91. DOI: https://doi.org/10.1111/mpp.13009
Foolad, M.R. 2007. Current status of breeding tomatoes for salt and drought tolerance. In: Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. M.A. Jenks, P.M. Hasegawa, S.M. Jain (Eds.). Springer, Dordrecht.
Fu, F.Q., Mao, W.H., Shi, K., Zhou, Y.H., Asami, T. & Yu, J.Q. 2008. A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany, 59(9): 2299-2308. DOI: https://doi.org/10.1093/jxb/ern093
Gallego-Bartolomé, J., Minguet, E.G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S.G., Alabadí, D. & Blázquez, M.A. 2012. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33): 13446-13451. DOI: https://doi.org/10.1073/pnas.1119992109
Galli, M., Hochstein, S., Iqbal, D., Claar, M., Imani, J. & Kogel, K.H. 2022. CRISPR/Sp Cas9-mediated KO of epigenetically active MORC proteins increases barley resistance to Bipolaris spot blotch and Fusarium root rot. Journal of Plant Diseases and Protection, 129(4): 1005-1011. DOI: https://doi.org/10.1007/s41348-022-00574-y
Gallusci, P., Dai, Z., Génard, M., Gauffretau, A., Leblanc-Fournier, N., Richard-Molard, C., Vile, D. & Brunel-Muguet, S. 2017. Epigenetics for plant improvement: Current knowledge and modeling avenues. Trends in Plant Science, 22(7): 610-623. DOI: https://doi.org/10.1016/j.tplants.2017.04.009
Geng, S., Kong, X., Song, G., Jia, M., Guan, J., Wang, F., Qin, Z., Wu, L., Lan, X., Li, A. & Mao, L. 2019. DNA methylation dynamics during the interaction of wheat progenitor Aegilops tauschii with the obligate biotrophic fungus Blumeria graminis f. sp. tritici. New Phytologist, 221(2): 1023-1035. DOI: https://doi.org/10.1111/nph.15432
Gillaspy, G., Ben-David, H. & Gruissem, W. 1993. Fruits: A Developmental Perspective. Plant Cell, 5(10): 1439-1451. DOI: https://doi.org/10.2307/3869794
Goetz, M., Vivian-Smith, A., Johnson, S.D. & Koltunow, A.M. 2006. AUXIN RESPONSE FACTOR8 Is a negative regulator of fruit initiation in Arabidopsis. Plant Cell, 18(8): 1873-86. DOI: https://doi.org/10.1105/tpc.105.037192
Gonzalez, N., Gévaudant, F., Hernould, M., Chevalier, C. & Mouras, A. 2007. The cell cycle‐associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. The Plant Journal, 51(4): 642-655. DOI: https://doi.org/10.1111/j.1365-313X.2007.03167.x
Gu, Q., Ferrándiz, C., Yanofsky, M.F. & Martienssen, R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125(8): 1509-17. DOI: https://doi.org/10.1242/dev.125.8.1509
Guilfoyle, T. 1999. Auxin-regulated genes and promoters. New Comprehensive Biochemistry, 33: 423-459. DOI: https://doi.org/10.1016/S0167-7306(08)60499-8
Gutzat, R., Rembart, K., Nussbaumer, T., Hofmann, F., Pisupati, R., Bradamante, G., Daubel, N., Gaidora, A., Lettner, N., Doná, M., Nordborg, M., Nodine, M. & Scheid, O.M. 2020. Arabidopsis shoot stem cells display dynamic transcription and DNA methylation patterns. The EMBO Journal, 39: e103667. DOI: https://doi.org/10.15252/embj.2019103667
Hagen, G. & Guilfoyle, T. 2002. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Molecular Biology, 49: 373-385. https://doi.org/10.1023/A:1015207114117 DOI: https://doi.org/10.1007/978-94-010-0377-3_9
Harada, T., Kurahashi, W., Yanai, M., Wakasa, Y. & Satoh, T. 2005. Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Scientia Horticulturae, 105: 447-456. DOI: https://doi.org/10.1016/j.scienta.2005.02.006
Harberd, N.P., Belfield, E. & Yasumura, Y. 2009. The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: How an "Inhibitor of an Inhibitor" enables flexible response to fluctuating environments. The Plant Cell, 21: 1328-1339. DOI: https://doi.org/10.1105/tpc.109.066969
Hasan, S.A., Hayat, S. & Ahmad, A. 2011. Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 84(10): 1446-51. DOI: https://doi.org/10.1016/j.chemosphere.2011.04.047
Hayashi, S. & Tanabe, K. 1991. Basic Knowledge of Fruit Tree Culture. Japan: Association Agriculture Press, Tottori.
Hedden, P. & Kamiya, Y. 1997. Gibberellin biosynthesis: Enzymes, genes and their regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 48: 431-460. DOI: https://doi.org/10.1146/annurev.arplant.48.1.431
Hedden, P. & Thomas, S.G. 2012. Gibberellin biosynthesis and its regulation. Biochemical Journal, 444(1): 11-25. DOI: https://doi.org/10.1042/BJ20120245
Higashi, K., Hosoya, K. & Ezura, H. 1999. Histological analysis of fruit development between two melon (Cucumis melo L. reticulatus) genotypes setting a different size of fruit. Journal of Experimental Botany, 50: 1593-1597. DOI: https://doi.org/10.1093/jxb/50.339.1593
Himanen, K., Boucheron, E., Vanneste, S., de Almeida, E.J., Inzé, D. & Beeckman, T. 2002. Auxin-mediated cell cycle activation during early lateral root initiation. The Plant Cell Online, 14: 2339-2351. DOI: https://doi.org/10.1105/tpc.004960
Hoagland, R.E. & Boyette, C.D. 2024. Interaction of gibberellic acid and glyphosate on growth and phenolic metabolism in soybean seedlings. Agronomy, 14(4): 684. DOI: https://doi.org/10.3390/agronomy14040684
Huang, L., Liu, X., Pandey, M. K., Ren, X., Chen, H., Xue, X., Liu, N., Huai, D., Chen, Y., Zhou, X., Luo, H., Chen, W., Lei, Y., Liu, K., Xiao, Y., Varhney, R.K., Liao, B. & Jiang, H. 2020. Genome‐wide expression quantitative trait locus analysis in a recombinant inbred line population for trait dissection in peanut. Plant Biotechnology Journal, 18(3): 779-790. DOI: https://doi.org/10.1111/pbi.13246
Ioio, R.D., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P. & Sabatini, S. 2007. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Current biology, 17(8): 678-682. DOI: https://doi.org/10.1016/j.cub.2007.02.047
Janssen, B.J., Thodey, K., Schaffer, R.J., Alba, R., Balakrishnan, L., Bishop, R., Bowen, J.H., Crowhurst, R.N., Gleave, A.P., McArtney, S., Pichler, F.B., Snowden, K.C. & Ward, S. 2008. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology, 8: 16. DOI: https://doi.org/10.1186/1471-2229-8-16
Jiang, G., Liu, D., Yin, D., Zhou, Z., Shi, Y., Li, C., Zhu, L. & Zhai, W. 2020. A rice NBS-ARC gene conferring quantitative resistance to bacterial blight is regulated by a pathogen effector-inducible miRNA. Molecular Plant, 13(12): 1752-1767. DOI: https://doi.org/10.1016/j.molp.2020.09.015
Jianhon, H., Mitchum, M. G., Barnaby, N., Ayele, B.T., Ogawa, M., Nam, E., Lai, W.C., Hanada, A., Alonso, J.M., Ecker, J.R., Swain, S.M., Yamaguchi, S., Kamiya, Y. & Sun, T.P. 2008. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. The Plant Cell, 20(2): 320-336. DOI: https://doi.org/10.1105/tpc.107.057752
Johnson, L.K., Malladi, A., Sciences, M.P. & Nesmith, D.S. 2011. Differences in cell number facilitate fruit size variation in rabbiteye blueberry genotypes. Journal of American Society of Horticultural Science, 136(1): 10-15. DOI: https://doi.org/10.21273/JASHS.136.1.10
Kalev, N. & Aloni, R. 1998. Role of auxin and gibberellin in regenerative differentiation of tracheids in Pinus pinea seedlings. New Phytologist, 138(3): 461-68. DOI: https://doi.org/10.1046/j.1469-8137.1998.00119.x
Kang, C., Darwish, O., Geretz, A., Shahan, R., Alkharouf, N. & Liu, Z. 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. The Plant Cell, 25(6): 1960-1978. DOI: https://doi.org/10.1105/tpc.113.111732
Karim, S.K.A., Allan, A.C., Schaffer, R.J. & David, K.M. 2022a. Cell division controls final fruit size in three apple (Malus x domestica) cultivars. Horticulturae, 8(7): 657. DOI: https://doi.org/10.3390/horticulturae8070657
Karim, S.K.A., Read, N., David, K. M., Allan, A.C. & Schaffer, R.J. 2022b. Characterisation of induced Malus x domestica 'Royal Gala' cell differentiation by using different hormones in cell cultures. The Journal of Horticultural Science and Biotechnology, 97(5): 626-624. DOI: https://doi.org/10.1080/14620316.2022.2051757
Kobayashi, H. 2019. Variations of endoreduplication and its potential contribution to endosperm development in rice (Oryza sativa L.). Plant Production Science, 22(2): 227-241. DOI: https://doi.org/10.1080/1343943X.2019.1570281
Kojima, K., Kuraishi, S., Sakurai, N. & Fusao, K. 1993. Distribution of abscisic acid in different parts of the reproductive organs of tomato. Scientia Horticulturae, 56(1): 23-30. DOI: https://doi.org/10.1016/0304-4238(93)90098-B
Kojima, K., Sakurai, N. & Tsurusaki, K. 1994. IAA distribution within tomato flower and fruit. HortScience, 29(10): 1200. DOI: https://doi.org/10.21273/HORTSCI.29.10.1200
Kong, L., Liu, Y., Wang, X. & Chang, C. 2020. Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley. International Journal of Molecular Sciences, 21(4): 1480. DOI: https://doi.org/10.3390/ijms21041480
Koshioka, M., Nishijima, T., Yamazaki, H., Liu, Y., Nonaka, M. & Mander, L.N. 1994. Analysis of gibberellins in growing fruits of Lycopersicon Esculentum after pollination or treatment with 4-chlorophenoxyacetic acid. Journal of Horticulture Science, 69: 171-179. DOI: https://doi.org/10.1080/14620316.1994.11515263
Kumar, R., Khurana, A. & Sharma, A.K. 2014. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 65(16): 4561-4575. DOI: https://doi.org/10.1093/jxb/eru277
Kuo, H. Y., Jacobsen, E. L., Long, Y., Chen, X. & Zhai, J. 2017. Characteristics and processing of Pol IV-dependent transcripts in Arabidopsis. Journal of Genetics and Genomics, 44(1): 3-6. DOI: https://doi.org/10.1016/j.jgg.2016.10.009
Kuźnicki, D., Meller, B., Arasimowicz-Jelonek, M., Braszewska-Zalewska, A., Drozda, A. & Floryszak-Wieczorek, J. 2019. BABA-induced DNA methylome adjustment to intergenerational defense priming in potato to Phytophthora infestans. Frontiers in plant science, 10: 650. DOI: https://doi.org/10.3389/fpls.2019.00650
Law, D.M. & Hamilton, R.H. 1984. Effects of gibberellic acid on endogenous indole-3-acetic acid and indoleacetyl aspartic acid levels in a dwarf pea. Plant Physiology, 75 (1): 255-56. DOI: https://doi.org/10.1104/pp.75.1.255
Li, J. & Nam, K.H. 2002. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295: 1299-1301. DOI: https://doi.org/10.1126/science.1065769
Li, J., Wu, Z., Cui, L., Zhang, T., Guo, Q., Xu, J., Jia, L., Lou, Q., Huang, S., Li, Z. & Chen, J. 2014. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). Plant & Cell Physiology, 55: 1325-1342. DOI: https://doi.org/10.1093/pcp/pcu051
Li, L., He, Y., Zhang, X., Zhang, H., Sun, Z., Li, J. & Hong, G. 2020. Alterations of rice (Oryza sativa L.) DNA methylation patterns associated with gene expression in response to rice black streaked dwarf virus. International Journal of Molecular Sciences, 21(16): 5753. DOI: https://doi.org/10.3390/ijms21165753
Lisso, J., Altmann, T. & Müssig, C. 2006. Metabolic changes in fruits of the tomato dx mutant. Phytochemistry, 67(20): 2232-2238. DOI: https://doi.org/10.1016/j.phytochem.2006.07.008
Liu, Z., Ma, H., Jung, S., Main, D. & Guo, L. 2020. Developmental mechanisms of fleshy fruit diversity in Rosaceae. Annual Review of Plant Biology, 71: 547-573. DOI: https://doi.org/10.1146/annurev-arplant-111119-021700
Ljung, K. 2013. Auxin metabolism and homeostasis during plant development. Development, 140(5): 943-950. DOI: https://doi.org/10.1242/dev.086363
Löfke, C., Luschnig, C. & Kleine-Vehn, J. 2013. Posttranslational modification and trafficking of PIN auxin efflux carriers. Mechanisms of Development, 130(1): 82-94. DOI: https://doi.org/10.1016/j.mod.2012.02.003
Long, J., Walker, J., She, W., Aldridge, B., Gao, H., Deans, S., Vickers, M. & Feng, X. 2021. Nurse cell-derived small RNAs de paternal epigenetic inheritance in Arabidopsis. Science, 373(6550): eabh0556. DOI: https://doi.org/10.1126/science.abh0556
Luo, X., Cao, J., Huang, J., Wang, Z., Guo, Z., Chen, Y., Ma, S. & Liu, J. 2018. Genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Cercospora sojina Hara on soybean. DNA Research, 25(1): 25-37. DOI: https://doi.org/10.1093/dnares/dsx035
Malladi, A. & Hirst, P.M. 2010. Increase in fruit size of a spontaneous mutant of "Gala" Apple (Malus×domestica Borkh.) is facilitated by altered cell production and enhanced cell size. Journal of Experimental Botany, 61(11): 3003-3013. DOI: https://doi.org/10.1093/jxb/erq134
Mapelli, S., Frova, C., Torti, G. & Soressi, G.P. 1978. Relationship between set, development and activities of growth regulators in tomato fruits. Plant and Cell Physiology, 19(7): 1281-88.
Mariotti, L., Picciarelli, P., Lombardi, L. & Ceccarelli, N. 2011. Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. Journal of Plant Growth Regulation, 30(4): 405-415. DOI: https://doi.org/10.1007/s00344-011-9204-1
McAtee, P., Karim, S., Schaffer, R. & David, K. 2013. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Frontiers in Plant Science, 4(79): 79. DOI: https://doi.org/10.3389/fpls.2013.00079
Meco, V., Egea, I., Albaladejo, I., Campos, J.F., Morales, B., Ortíz‐Atienza, A., Capel, C., Angosto, T., Bolarin, M.C. & Flores, F.B. 2019. Identification and characterisation of the tomato parthenocarpic mutant high fruit set under stress (hfs) exhibiting high productivity under heat and salt stress. Annals of Applied Biology, 174(2): 166-178. DOI: https://doi.org/10.1111/aab.12486
Milhinhos, A. & Miguel, C.M. 2013. Hormone interactions in xylem development: A matter of signals. Plant Cell Reports, 32: 867-883. DOI: https://doi.org/10.1007/s00299-013-1420-7
Miri, M., Janakirama, P., Huebert, T., Ross, L., McDowell, T., Orosz, K., Markmann, K. & Szczyglowski, K. 2019. Inside out: Root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. New Phytol, 222: 1523-1537. DOI: https://doi.org/10.1111/nph.15683
Mitchell, J.W., Mandava, N., Worley, J.F., Plimmer, J.R. & Smith, M.V. 1970. Brassins a new family of plant hormones from rape pollen. Nature, 225: 1065-1066. DOI: https://doi.org/10.1038/2251065a0
Mizzotti, C., Rotasperti, L., Moretto, M., Tadini, L., Resentini, F., Galliani, B.M., Galbiati, M., Engelen, K., Pesaresi, P. & Masiero, S. 2018. Time-course transcriptome analysis of Arabidopsis siliques discloses genes essential for fruit development and maturation. Plant physiology, 178(3): 1249-1268. DOI: https://doi.org/10.1104/pp.18.00727
Molesini, B., Dusi, V., Pennisi, F. & Pandolfini, T. 2020. How hormones and mads-box transcription factors are involved in controlling fruit set and parthenocarpy in tomato. Genes, 11(12): 1441. DOI: https://doi.org/10.3390/genes11121441
Moubayidin, L., Di Mambro, R. & Sabatini, S. 2009. Cytokinin-auxin crosstalk. Trends in Plant Science, 14(10): 557-562. DOI: https://doi.org/10.1016/j.tplants.2009.06.010
Muraro, D., Byrne, H., King, J. & Bennett, M. 2013. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. Journal of Theoretical Biology, 317: 71-86. DOI: https://doi.org/10.1016/j.jtbi.2012.08.032
Naqvi, S.S.M. 2001. Plant growth hormones: Growth promoters and inhibitors. In: Handbook of Plant and Crop Physiology. CRC Press, Arizona. pp. 523-548. DOI: https://doi.org/10.1201/9780203908426-27
Nardozza, S., Hallett, I.C., McCartney, R., Richardson, A.C., Macrae, E.A., Costa, G. & Michael, J.C. 2011. Is fruit anatomy involved in variation in fruit starch concentration between Actinidia deliciosa genotypes? Functional Plant Biology, 38(1): 63-74. DOI: https://doi.org/10.1071/FP10158
Nemhauser, J.L., Mockler, T.C. & Chory, J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2(9): e258. DOI: https://doi.org/10.1371/journal.pbio.0020258
NeSmith, D.S. 2004. Fruit development period of several rabbiteye blueberry cultivars. Acta Horticulturae, 715: 137-142. DOI: https://doi.org/10.17660/ActaHortic.2006.715.19
Nitsch, L., Kohlen, W., Oplaat, C., Charnikhova, T., Cristescu, S., Michieli, P., Wolters-Arts, M., Bouwmeester, H., Mariani, C., Vriezen, W.H., Rieu, I. 2012. ABA-deficiency results in reduced plant and fruit size in tomato. Journal of Plant Physiology, 169(9): 878-83. DOI: https://doi.org/10.1016/j.jplph.2012.02.004
Nybom, H., Ahmadi-Afzadi, M., Rumpunen, K. & Tahir, I. 2020. Review of the impact of apple fruit ripening, texture and chemical contents on genetically determined susceptibility to storage rots. Plants, 9(7): 831. DOI: https://doi.org/10.3390/plants9070831
Olimpieri, I., Siligato, F., Caccia, R., Soressi, G.P., Mazzucato, A., Mariotti, L. & Ceccarelli, N. 2007. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226(4): 877-88. DOI: https://doi.org/10.1007/s00425-007-0533-z
Olmstead, J.W., Lezzoni, A.F. & Whiting, M.D. 2007. Genotypic differences in sweet cherry fruit size are primarily a function of cell number. Journal of the American Society for Horticultural Science, 132 (5): 697-703. DOI: https://doi.org/10.21273/JASHS.132.5.697
Olszewski, N., Sun, T.P. & Gubler, F. 2002. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell, 14(90001): 61-80. DOI: https://doi.org/10.1105/tpc.010476
Ozga, J.A. & Reinecke, D.M. 2003. Hormonal interactions in fruit development. Journal of Plant Growth Regulation, 22: 73-81. DOI: https://doi.org/10.1007/s00344-003-0024-9
Pandolfini, T., Molesini, B. & Spena, A. 2007. Molecular dissection of the role of auxin in fruit initiation. Trends in Plant Science, 12(8): 327-29. DOI: https://doi.org/10.1016/j.tplants.2007.06.011
Qi, T., Guo, J., Peng, H., Liu, P., Kang, Z. & Guo, J. 2019. Host-induced gene silencing: A powerful strategy to control diseases of wheat and barley. International Journal of Molecular Sciences, 20(1): 206. DOI: https://doi.org/10.3390/ijms20010206
Qiao, H., Zhang, H., Wang, Z. & Shen, Y. 2021. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid. Journal of Integrative Plant Biology, 63(3): 553-569. DOI: https://doi.org/10.1111/jipb.13065
Rajnović, T., Vokurka, A. & Bolarić, S. 2020. Epigenetics in plant breeding. Journal of Central European Agriculture, 21(1): 56-61. DOI: https://doi.org/10.5513/JCEA01/21.1.2765
Rambani, A., Pantalone, V., Yang, S., Rice, J.H., Song, Q., Mazarei, M., Arelli, P.R., Meksem, K., Stewart, C.N. & Hewezi, T. 2020. Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. New Phytologist, 227(1): 168-184. DOI: https://doi.org/10.1111/nph.16511
Rapoport, H.F., Manrique, T. & Gucci, R. 2004. Cell division and expansion in the olive fruit. Acta Horticulturae, 636: 461-465. DOI: https://doi.org/10.17660/ActaHortic.2004.636.56
Reale, L., Rosati, A., Tedeschini, E., Ferri, V., Cerri, M., Ghitarrini, S., Timorato, V., Ayano, B.E., Porfiri, O., Frenguelli, G., Ferranti, F. & Benincasa, P. 2017. Ovary size in wheat (Triticum aestivum L.) is related to cell number. Crop Science, 57(2): 914-925. DOI: https://doi.org/10.2135/cropsci2016.06.0511
Rodríguez-Gacio, M.D.C., Matilla-Vázquez, M.A. & Matilla, A.J. 2009. Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signaling & Behavior, 4(11): 1035-1048. DOI: https://doi.org/10.4161/psb.4.11.9902
Rosati A., Caporali, S., Hammami, S.B.M., Moreno-Alías, I., Paoletti, A. & Rapoport, H.F. 2012. Tissue size and cell number in the olive (Olea europaea) ovary determine tissue growth and partitioning in the fruit. Functional Plant Biology, 39(7): 580-587. DOI: https://doi.org/10.1071/FP12114
Rosati, A., Caporali, S., Hammami, S.B., Moreno-Alías, I. & Rapoport, H. 2020. Fruit growth and sink strength in olive (Olea europaea) are related to cell number, not to tissue size. Functional Plant Biology, 47(12): 1098-1104. DOI: https://doi.org/10.1071/FP20076
Rosati, A., Caporali, S., Hammami, S.B., Moreno-Alías, I., Paoletti, A. & Rapoport, H.F. 2011. Differences in ovary size among olive (Olea europaea L.) cultivars are mainly related to cell number, not to cell size. Scientia Horticulturae, 130(1): 185-190. DOI: https://doi.org/10.1016/j.scienta.2011.06.035
Ross, B.T., Zidack, N.K. & Flenniken, M.L. 2021. Extreme resistance to viruses in potato and soybean. Frontiers in Plant Science, 12: 658981. DOI: https://doi.org/10.3389/fpls.2021.658981
Saibo, N.J., Vriezen, W.H., Beemster, G.T. & Van Der Straeten, D. 2003. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. The Plant Journal, 33(6): 989-1000. DOI: https://doi.org/10.1046/j.1365-313X.2003.01684.x
Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., Tabata, S. & Oka, A. 2001. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 294(5546): 1519-1521. DOI: https://doi.org/10.1126/science.1065201
Saripalli, G., Sharma, C., Gautam, T., Singh, K., Jain, N., Prasad, P., Roy, J.K., Sharma, J.B., Sharma, P.K., Prabhu, K.V., Balyan, H.S. & Gupta, P.K. 2020. Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Molecular Biology Reports, 4: 1339-1360. DOI: https://doi.org/10.1007/s11033-019-05236-1
Sauer, M. & Kleine-Vehn, J. 2011. Auxin binding protein1: the outsider. The Plant Cell, 23(6): 2033-2043. DOI: https://doi.org/10.1105/tpc.111.087064
Savadi, S., Prasad, P., Kashyap, P.L. & Bhardwaj, S.C. 2018. Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant pathology, 67(4): 771-791. DOI: https://doi.org/10.1111/ppa.12802
Scorzal, R., May, L.G., Purnell, B. & Upchurch, B. 1991. Differences in number and area of mesocarp cells between small- and large-fruited peach cultivars. Journal of the American Society for Horticultural Science, 116(5): 861-864. DOI: https://doi.org/10.21273/JASHS.116.5.861
Serrani, J.C., Fos, M., Atarés, A. & García-Martínez, J.L. 2007. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. Journal of Plant Growth Regulation, 26(3): 211-21. DOI: https://doi.org/10.1007/s00344-007-9014-7
Seymour, G., Poole, M., Manning, K. & King, G.J. 2008. Genetics and epigenetics of fruit development and ripening. Current Opinion in Plant Biology, 11(1): 58-63. DOI: https://doi.org/10.1016/j.pbi.2007.09.003
Shah, S.H., Islam, S., Mohammad, F. & Siddiqui, M.H. 2023. Gibberellic acid: a versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation, 42(12): 7352-7373. DOI: https://doi.org/10.1007/s00344-023-11035-7
Sicilia, A., Catara, V., Scialò, E. & Lo Piero, A.R. 2021. Fungal infection induces anthocyanin biosynthesis and changes in DNA methylation configuration of blood orange [Citrus sinensis L. (Osbeck)]. Plants, 10(2): 244. DOI: https://doi.org/10.3390/plants10020244
Sjut, V. & Bangerth, F. 1982. Induced parthenocarpy-a way of changing the levels of endogenous hormones in tomato fruits (Lycopersicon esculentum Mill.) 1. extractable hormones. Plant Growth Regulation, 1(4): 243-251. DOI: https://doi.org/10.1007/BF00024718
Srivastava, A. & Handa, A.K. 2005. Hormonal regulation of tomato fruit development: A molecular perspective. Journal of Plant Growth Regulation, 24(2): 67-82. DOI: https://doi.org/10.1007/s00344-005-0015-0
Stals, H. & Inzé, D. 2001. When plant cells decide to divide. Trends in Plant Science, 6(8): 359-364. DOI: https://doi.org/10.1016/S1360-1385(01)02016-7
Su, W., Xu, M., Radani, Y. & Yang, L. 2023. Technological development and application of plant genetic transformation. International Journal of Molecular Sciences, 24(13): 10646. DOI: https://doi.org/10.3390/ijms241310646
Swarup, R., Parry, G., Graham, N., Allen, T. & Bennett, M. 2002. Auxin cross-talk: Integration of signalling pathways to control plant development. In: Auxin Molecular Biology. C. Perrot-Rechenmann, G. Hagen (Eds). Springer, Dordrecht. pp. 411-426. DOI: https://doi.org/10.1007/978-94-010-0377-3_12
Symons, G.M., Davies, C., Shavrukov, Y., Dry, I.B., Reid, J.B. & Thomas, M.R. 2006. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140(1): 150-58. DOI: https://doi.org/10.1104/pp.105.070706
Szemenyei, H., Hannon, M. & Long, J.A. 2008. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science, 319(5868):1384-1386. DOI: https://doi.org/10.1126/science.1151461
Taiz, L. & Zeiger, E. 2010. Plant Physiology. 5th Edition. Sinauer Associates Inc., Sunderland. 782 p.
Tariq, M. & Paszkowski, J. 2004. DNA and histone methylation in plants. TRENDS in Genetics, 20(6): 244-251. DOI: https://doi.org/10.1016/j.tig.2004.04.005
Tini, F., Beccari, G., Marconi, G., Porceddu, A., Sulyok, M., Gardiner, D.M., Albertini, E. & Covarelli, L. 2021. Identification of putative virulence genes by DNA methylation studies in the cereal pathogen Fusarium graminearum. Cells, 10(5): 1192. DOI: https://doi.org/10.3390/cells10051192
Torii, K., Kubota, A., Araki, T. & Endo, M. 2020. Time-series single-cell RNA-seq data reveal auxin fluctuation during endocycle. Plant and Cell Physiology, 61(2): 243-254. DOI: https://doi.org/10.1093/pcp/pcz228
Tripathi, P., Shah, S., Kashyap, S.D. & Tripathi, A. 2019. Fruit yield and quality characteristics of high density Prunus persica (L.) Batsch plantation intercropped with medicinal and aromatic plants in the Indian Western Himalayas. Agroforestry Systems, 93(5): 1717-1728. DOI: https://doi.org/10.1007/s10457-018-0276-9
Tsuzuki, M., Sethuraman, S., Coke, A.N., Rothi, M.H., Boyle, A.P. & Wierzbicki, A.T. 2020. Broad noncoding transcription suggests genome surveillance by RNA polymerase V. Proceedings of the National Academy of Sciences, 117(48): 30799-30804. DOI: https://doi.org/10.1073/pnas.2014419117
Tyagi, A., Ali, S., Ramakrishna, G., Singh, A., Park, S., Mahmoudi, H. & Bae, H. 2023. Revisiting the role of polyamines in plant growth and abiotic stress resilience: Mechanisms, crosstalk, and future perspectives. Journal of Plant Growth Regulation, 42(8): 5074-5098. DOI: https://doi.org/10.1007/s00344-022-10847-3
Vanyushin, B.F. & Ashapkin, V.V. 2011. DNA methylation in higher plants: past, present and future. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1809(8): 360-368. DOI: https://doi.org/10.1016/j.bbagrm.2011.04.006
Vidya, V.B. & Rao, S.S.R. 2002. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61(7): 843-847. DOI: https://doi.org/10.1016/S0031-9422(02)00223-6
Vriezen, W.H., Feron, R., Maretto, F., Keijman, J. & Mariani, C. 2008. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytologist, 177(1): 60-76. DOI: https://doi.org/10.1111/j.1469-8137.2007.02254.x
Wang, C., Jogaiah, S., Zhang, W., Abdelrahman, M. & Fang, J.G. 2018. Spatio-temporal expression of miRNA159 family members and their GAMYB target gene during the modulation of gibberellin-induced grapevine parthenocarpy. Journal of Experimental Botany, 69(15): 3639-3650. DOI: https://doi.org/10.1093/jxb/ery172
Wang, H., Jones, B., Li, Z., Frasse, P., Delalande, C., Regad, F., Chaabouni, S., Latché, A., Pech, J.C. & Bouzayen, M. 2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell, 17(10): 2676-2692. DOI: https://doi.org/10.1105/tpc.105.033415
Wang, L., Chen, H., Li, J.J., Shu, H., Zhang, X., Wang, Y., Tyler, B.M. & Dong, S. 2020. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Research, 48(4): 1790-1799. DOI: https://doi.org/10.1093/nar/gkz1160
Willige, B. C., Isono, E., Richter, R., Zourelidou, M. & Schwechheimer, C. 2011. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. The Plant Cell, 23(6): 2184-2195. DOI: https://doi.org/10.1105/tpc.111.086355
Wu, Y., Wang, F., Lyu, K. & Liu, R. 2024. Comparative analysis of transposable elements in the genomes of citrus and citrus-related genera. Plants, 13(17): 2462. DOI: https://doi.org/10.3390/plants13172462
Xin, Y., Ma, B., Zeng, Q., He, W., Qin, M. & He, N. 2021. Dynamic changes in transposable element and gene methylation in mulberry (Morus notabilis) in response to Botrytis cinerea. Horticulture Research, 8(1): 1-14. DOI: https://doi.org/10.1038/s41438-021-00588-x
Yamaguchi, M., Haji, T., Miyake, M., Yaegaki, H. 2002. Varietal differences in cell division and enlargement periods during peach (Prunus persica 'Batsch') fruit development. Journal of The Japanese Society for Horticultural Science, 71: 155-163. DOI: https://doi.org/10.2503/jjshs.71.155
Yamaguchi, M., Sato, I., Takase, K., Watanabe, A. & Ishiguro, M. 2004. Differences and yearly variation in number and size of mesocarp cells in sweet cherry (Prunus avium L.) cultivars and related species. Journal of the Japanese Society for Horticultural Science, 73(1): 12-18. DOI: https://doi.org/10.2503/jjshs.73.12
Yang, Z., Zhong, X., Fan, Y., Wang, H., Li, J. & Huang, X. 2015. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan). Frontiers in Plant Science, 6: 360. DOI: https://doi.org/10.3389/fpls.2015.00360
Zeng, W.Y., Tan, Y.R., Long, S.F., Sun, Z.D., Lai, Z.G., Yang, S.Z., Chen, H.Z. & Qing, X.Y. 2021. Methylome and transcriptome analyses of soybean response to bean pyralid larvae. BMC Genomics, 22: 836. DOI: https://doi.org/10.1186/s12864-021-08140-w
Zhang, C., Tanabe, K., Tamura, F., Itai, A. & Wang, S. 2005. Spur characteristics, fruit growth, and carbon partitioning in two late-maturing Japanese pear (Pyrus Pyrifolia Nakai) cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science, 130(2): 252-260. DOI: https://doi.org/10.21273/JASHS.130.2.252
Zhang, C., Tanabe, K., Tani, H., Nakajima, H., Mori, M. & Sakuno, E. 2007. Biologically active gibberellins and abscisic acid in fruit of two late-maturing Japanese pear cultivars with contrasting fruit size. Journal of American Society for Horticultural Science 132(4): 452-458.
Zhang, C., Tanabe, K., Tani, H., Nakajima, H., Mori, M. & Sakuno, E. 2007. Biologically active gibberellins and abscisic acid in fruit of two late-maturing Japanese pear cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science, 132(4): 452-58. DOI: https://doi.org/10.21273/JASHS.132.4.452
Zhang, C., Tanabe, K., Wang, S., Tamura, F., Yoshida, A. & Matsumoto, K. 2006. The impact of cell division and cell enlargement on the evolution of fruit size in Pyrus pyrifolia. Annals of Botany, 98: 537-543. DOI: https://doi.org/10.1093/aob/mcl144
Zhang, M., Ma, X., Wang, C., Li, Q., Meyers, B.C., Springer, N.M. & Walbot, V. 2021. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers. New Phytologist, 229(5): 2984-2997. DOI: https://doi.org/10.1111/nph.17060
Zhao, J., Wang, J., Liu, J., Zhang, P., Kudoyarova, G., Liu, C.J. & Zhang, K. 2024. Spatially distributed cytokinins: metabolism, signaling, and transport. Plant Communications. 5(7): 100936. DOI: https://doi.org/10.1016/j.xplc.2024.100936
Zhao, X., Muhammad, N., Zhao, Z., Yin, K., Liu, Z., Wang, L., Zhi, L. & Liu, M. 2021. Molecular regulation of fruit size in horticultural plants: A review. Scientia Horticulturae, 288: 110353. DOI: https://doi.org/10.1016/j.scienta.2021.110353
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Kementerian Pendidikan Malaysia
Grant numbers FRGS/1/2017/WAB01/UITM/02/6