Comparisons on Growth Performance, Survivability, Organoleptic Qualities and Economic Feasibility of Asian Seabass (Lates calcarifer) Reared in Different Salinities
Keywords:
Asian seabass, economic analysis, growth performance, lates calcarifer, organoleptic qualities, salinityAbstract
Asian seabass, Lates calcarifer is among the most cultured aquaculture species in the Southeast Asian region due to its remarkable tolerance for a diverse environmental fluctuation. In aquaculture, salinity has a direct influence on many biological, physiological and market value of any cultured fish. This study investigated the impacts of different salinities (0, 15, & 30 ppt) on Asian seabass growth, body indices, feeding performance, organoleptic qualities, and production cost for 85 days. Ninety fish were reared in 700-liter tanks equipped with recirculation system with 10 fish each tank. They were fed with commercial marine feed. The findings revealed Asian seabass in 15 ppt attained significantly higher (p>0.05) body weight (470.40 ± 41.16 g), total length (31.51 ± 0.81 cm), total feed intake (309.28 ± 35.66 g/fish) and daily feed intake (3.64 ± 0.42 g/fish/day) compared to 30 ppt but remained insignificant with 0 ppt. Meanwhile, there was no significant difference (p<0.05) in terms of body weight gain, specific growth rate, body indices, and feed conversion ratio of Asian seabass when reared in different salinities. The organoleptic qualities showed that rearing Asian seabass in different salinities has no significant effect (p<0.05) on odour, appearance, texture, and flavour score. However, the overall acceptance score of Asian seabass reared in 30 ppt (3.53 ± 0.22) was significantly higher (p>0.05) compared to 15 ppt but remained insignificant with 0 ppt. Economically, Asian seabass cultured in 15 ppt yielded the most optimal conditions for profitable production. The findings conclude 15 ppt can promotes enhanced growth performance and profitability, while 0 ppt and 30 ppt can promote consumer acceptance positively.
Downloads
Metrics
References
Alhazzaa, R., Bridle, A.R., Nichol, P.D. & Carter, C.G. 2011. Up-regulated desaturase and elongase gene expression promoted accumulation of polyunsaturated fatty acid (PUFA) but not long-chain PUFA in Lates calcarifer, a tropical euryhaline fish, fed a stearidonic acid-and γ-linoleic acid-enriched diet. Journal of Agricultural and Food Chemistry, 59(15): 8423-8434. DOI: https://doi.org/10.1021/jf201871w
Anand, G., Srivastava, P.P., Varghese, T. & Gupta, S. 2022. Rearing in hypersaline inland ground saline water affect growth and osmoregulatory responses of common carp (Linnaeus 1758). DOI: https://doi.org/10.21203/rs.3.rs-1164718/v2
Andersen, L.K., Abernathy, J., Berlinsky, D.L., Bolton, G., Booker, M.M., Borski, R.J., Brown, T., Cerivo, D., Ciaramella, M., Clark, R.W., Frinsko, M.O., Fuller, S.A., Gabel, S., Green, B.W., Herbst, E., Hodson, R.G., Hopper, M., Kenter, L.W., Lopez, F., McGinty, A.S., Nash, B., Parker, M., Pigg, S., Rawless, S., Riley, K., Turano, M.J., Webster, C.D., Weirich, C.R., Won, E., Curry Woods III, L., Reading, B.J. & StriperHub. 2021. The status of striped bass, Morone saxatilis, as a commercially ready species for US marine aquaculture. Journal of the World Aquaculture Society, 52(3): 710-730. DOI: https://doi.org/10.1111/jwas.12812
Anil, M.K., Santhosh, B., Jasmine, S., Saleela, K.N., George, R.M., Kingsly, H.J. & Rao, G.S. 2010. Growth performance of the seabass Lates calcarifer (Bloch, 1790) in sea cage at Vizhinjam Bay along the south-west coast of India. Indian Journal of Fisheries, 57(4): 65-69.
Aswathy, N. & Imelda, J. 2018. Economic viability of cage farming of Asian seabass in the coastal waters of Kerala. International Journal of Fisheries and Aquatic Studies, 6(5): 368-371.
Bernardino, R.J., & Fernandes, C. 2016. Growth performance for European sea bass fingerlings, Dicentrarchus labrax, reared at different salinities. In: IMMR International Meeting on Marine Research. Marine and Environmental Sciences Centre, Peniche.
Boeuf, G. & Payan, P. 2001. How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4): 411-423. DOI: https://doi.org/10.1016/S1532-0456(01)00268-X
Catacutan, M.R. & Coloso, R.M. 1997. Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels. Aquaculture, 149: 137-144. DOI: https://doi.org/10.1016/S0044-8486(96)01432-9
Dawood, M.A., Gewaily, M.S. & Sewilam, H. 2022. The growth performance, antioxidative capacity, and histological features of intestines, gills, and livers of Nile tilapia reared in different water salinities and fed menthol essential oil. Aquaculture, 554: 738122. DOI: https://doi.org/10.1016/j.aquaculture.2022.738122
Du, X., Zhang, W., He, J., Zhao, M., Wang, J., Dong, X. & Miao, S. 2022. The impact of rearing salinity on flesh texture, taste, and fatty acid composition in largemouth bass Micropterus salmoides. Foods, 11(20): 3261. DOI: https://doi.org/10.3390/foods11203261
Gammanpila, M. & Singappuli, M.S. 2014. Economic viability of Asian sea bass (Lates calcarifer) and Tilapia (Oreochromis niloticus) small scale aquaculture systems in Sri Lanka. Sri Lanka Journal of Aquatic Sciences, 17. DOI: https://doi.org/10.4038/sljas.v17i0.6855
Ghosh, S., Megarajan, S., Ranjan, R., Dash, B., Pattnaik, P., Edward, L. & Xavier, B. 2016. Growth performance of Asian seabass Lates calcarifer (Bloch, 1790) stocked at varying densities in floating cages in Godavari Estuary, Andhra Pradesh, India. Indian Journal of Fisheries, 61(3): 146-149. DOI: https://doi.org/10.21077/ijf.2016.63.3.49095-23
Hamed, S.S., Jiddawi, N.S. & Poj, B. 2016. Effect of salinity levels on growth, feed utilization, body composition and digestive enzymes activities of juvenile silver pompano Trachinotus blochii. International Journal of Fisheries and Aquatic Studies, 4(6): 279-283.
Haque, M.A., Hossain, M.I., Uddin, S.A. & Dey, P.K. 2019. Review on distribution, culture practices, food and feeding, brood development and artificial breeding of Seabass, Lates calcarifer (BLOCH 1790): Bangladesh perspective. Research in Agriculture Livestock and Fisheries, 6(3): 405-414. DOI: https://doi.org/10.3329/ralf.v6i3.44806
Idris, S.M., Noordin, W.N.M., Manah, F.O. & Hamzah, A. 2022. Toward systematic breeding of Asian sea bass, Lates calcarifer (Bloch, 1790), in Malaysia: Status, challenges and prospects for future development. Asian Fisheries Science, 35: 1-12. DOI: https://doi.org/10.33997/j.afs.2022.35.1.001
Imsland, A.K., Foss, A., Gunnarsson, S., Berntssen, M.H., FitzGerald, R., Bonga, S.W. & Stefansson, S.O. 2001. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198(3-4): 353-367. DOI: https://doi.org/10.1016/S0044-8486(01)00507-5
Insivitawati, E., Hakimah, N. & Chudlori, M.S. 2022. Effect of temperature, pH, and salinity on body weight of Asian Seabass (Lates calcarifer) at different stockings. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1036(1): 012117. DOI: https://doi.org/10.1088/1755-1315/1036/1/012117
Masli, A., Senoo, S., Kawamura, G. & Fui, C.F. 2014. Effects of different light intensities on fry growth, survival and cannibalism control of Asian seabass (Lates calcarifer). International Research Journal of Biological Sciences, 3(5): 45-52.
Mathew, G. 2009. Taxonomy, identification and biology of Seabass (Lates calcarifer).
Mozanzadeh, M.T., Safari, O., Oosooli, R., Mehrjooyan, S., Najafabadi, M.Z., Hoseini, S.J. & Monem, J. 2021. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture, 534: 736329. DOI: https://doi.org/10.1016/j.aquaculture.2020.736329
Muhd-Faizul, H.A.H., Kua, B.C. & Leaw, Y.Y. 2012. Caligidae infestation in Asian seabass, Lates calcarifer, Bloch 1790 cultured at different salinity in Malaysia. Veterinary Parasitology, 184(1): 68-72. DOI: https://doi.org/10.1016/j.vetpar.2011.08.008
Mylonas, C.C., Pavlidis, M., Papandroulakis, N., Zaiss, M.M., Tsafarakis, D., Papadakis, I.E. & Varsamos, S. 2009. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environmental salinities. Aquaculture, 287(1-2): 203-210. DOI: https://doi.org/10.1016/j.aquaculture.2008.10.024
Nor, N.M., Yazid, S.H.M., Daud, H.M., Azmai, M.N.A. & Mohamad, N. 2019. Costs of management practices of Asian seabass (Lates calcarifer Bloch, 1790) cage culture in Malaysia using stochastic model that includes uncertainty in mortality. Aquaculture, 510: 347-352. DOI: https://doi.org/10.1016/j.aquaculture.2019.04.042
Othman, A.R., Kawamura, G., Senoo, S. & Fui, C. 2015. Effects of different salinities on growth, feeding performance and plasma cortisol level in hybrid TGGG (tiger grouper, Epinephelus fuscoguttatus x giant grouper, Epinephelus lanceolatus) juveniles. International Research Journal of Biological Sciences, 4(3): 15-20.
Pethiyagoda, R. & Gill, A.C. 2012. Description of two new species of sea bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka. Zootaxa, 3314(1): 1-16. DOI: https://doi.org/10.11646/zootaxa.3314.1.1
Purba, E.P., Ilza, M. & Leksono, T. 2016. Study Penerimaan Konsumen terhadap Steak (Fillet) Ikan Kakap Putih Flavor Asap. Jurnal Online Mahasiswa, 3(2):1-11.
Rahi, M.L., Azad, K.N., Tabassum, M., Irin, H.H., Hossain, K.S., Aziz, D., Moshtagi, A. & Hurwood, D.A. 2021. Effects of salinity on physiological, biochemical and gene expression parameters of black tiger shrimp (Penaeus monodon): Potential for farming in low-salinity environments. Biology, 10(12): 1220. DOI: https://doi.org/10.3390/biology10121220
Sarower, M.G., Hasanuzzaman, A.F.M., Biswas, B. & Abe, H. 2012. Taste producing components in fish and fisheries products: A review. International Journal of Food and Fermentation Technology, 2(2): 113-121.
Shapawi, R. 2020. Growth performance and organoleptic quality of hybrid grouper (Epinephelus fuscogutattus♀× Epinephelus lanceolatus♂) fed palm-oil based diets at grow-out stage. Sains Malaysiana, 49(7): 1567-1576. DOI: https://doi.org/10.17576/jsm-2020-4907-09
Shui, C., Shi, Y., Hua, X., Zhang, Z., Zhang, H., Lu, G. & Xie, Y. 2018. Serum osmolality and ions, and gill Na+/K+-ATPase of spottedtail goby Synechogobius ommaturus (R.) in response to acute salinity changes. Aquaculture and Fisheries, 3(2): 79-83. DOI: https://doi.org/10.1016/j.aaf.2018.03.002
Silva, T.S. & Piana, P.A. 2020. Production of tilapia in biofloc with different salt condictions: An evaluation of body composition and organoleptic properties. Boletim do Instituto de Pesca, 46(1). DOI: https://doi.org/10.20950/1678-2305.2020.46.1.537
Sintha, L. 2020. Importance of Break-EVEN analysis for the micro, small and medium enterprises. International Journal of Research-GRANTHAALAYAH, 8(6): 212-218. DOI: https://doi.org/10.29121/granthaalayah.v8.i6.2020.502
Sutthi, N., & Thaimuangphol, W. 2020. Effects of yeast (Saccharomyces cerevisiae) on growth performances, body composition and blood chemistry of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) under different salinity conditions. Iranian Journal of Fisheries Sciences, 19(3): 1428-1446.
Szűcs, I., Tikász, I.E., Fehér, M. & Stündl, L. 2018. Testing for consumer preferences of smoked Asian sea bass (Barramundi) filet products in Hungary. Cogent Business & Management, 5(1): 1432158. DOI: https://doi.org/10.1080/23311975.2018.1432158
Ucar, Y., Özogul, Y., Özogul, F., Durmuş, M., & Köşker, A.R. 2020. Effect of nisin on the shelf life of sea bass (Dicentrarchus labrax L.) fillets stored at chilled temperature (4±2 °C). Aquaculture International, 28: 851-863. DOI: https://doi.org/10.1007/s10499-020-00512-5
Vij, S., Purushothaman, K., Gopikrishna, G., Lau, D., Saju, J.M., Shamsudheen, K.V., Kumar, K.V., Basheer, V.S., Gopalakrishnan, A., Hossain, M.S., Sivasubbu, S., Scaria, V., Jena, J.K., Ponniah, A.G. & Orbán, L. 2014. Barcoding of Asian seabass across its geographic range provides evidence for its bifurcation into two distinct species. Frontiers in Marine Science, 1: 30. DOI: https://doi.org/10.3389/fmars.2014.00030
Vij, S., Purushothaman, K., Sridatta, P.S.R. & Jerry, D.R. 2020. Transcriptomic analysis of gill and kidney from Asian seabass (Lates calcarifer) acclimated to different salinities reveals pathways involved with euryhalinity. Genes, 11(7): 733. DOI: https://doi.org/10.3390/genes11070733
Wijayanto, D., Bambang, A.N., Nugroho, R.A., Kurohman, F. & Nursanto, D.B. 2021. Effect of salinity on growth and benefit-cost ratio of Asian seabass reared in artificial media. AACL Bioflux, 14(5):3000-3005.
Windarto, S., Hastuti, S., Subandiyono, S., Nugroho, R.A. & Sarjito, S. 2019 Growth performance of the seabass (Lates calcarifer Bloch, 1790) using the floating net cages system. Sains Akuakultur Tropis, 3(1): 56-60. DOI: https://doi.org/10.14710/sat.v3i1.4195
Woo, N.Y. & Kelly, S.P. 1995. Effects of salinity and nutritional status on growth and metabolism of Spams sarba in a closed seawater system. Aquaculture, 135(1-3): 229-238. DOI: https://doi.org/10.1016/0044-8486(95)01003-3
Published
Versions
- 01-07-2024 (2)
- 31-03-2024 (1)
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Malaysia Sabah
Grant numbers SDG Grant (SDG10-2020) -
Universiti Malaysia Sarawak
Grant numbers SDG Grant (SDG10-2020) -
Universiti Teknologi MARA
Grant numbers SDG Grant (SDG10-2020)