Nutritional Composition and Optimization of Extraction Conditions of Cocoa Pod Husk using Response Surface Methodology

https://doi.org/10.55230/mabjournal.v52i6.2730

Authors

  • Nurulain Hasya Azhar Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Uswatun Hasanah Zaidan Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM, Serdang, Selangor, Malaysia
  • Suhaili Shamsi Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Siti Salwa Abd Gani Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Arief Huzaimi Md Yusof Malaysia Cocoa Board, Cocoa Innovative and Technology Centre, Lot 12621 Nilai Industrial Area, 71800 Nilai, Negeri Sembilan, Malaysia

Keywords:

Cocoa pod husk, Flavonoids, Heavy metals, Nutritional composition, Response surface methodology (RSM)

Abstract

Cocoa pod husks (CPH) are usually disposed of from the farm, and this can lead to environmental problems, such as being a breeding ground for the cocoa pod borer. This study aimed to determine the nutritional composition and concentration of ultra-trace elements (As, Cd, Pb & Hg) in CPH. The optimization of the extraction conditions of CPH in response to the ferric-reducing antioxidant power (FRAP) by using response surface methodology (RSM) was also conducted. The findings show that the total carbohydrate and crude fibre content of CPH are high (35.75% & 35.47%, respectively) while having low levels of moisture, ash, crude protein, and fat (11.86%. 8.60%, 7.46% & 0.86, respectively). In addition, the results demonstrate that CPH has a low content of toxic metals As, Cd, Pb, and Hg (0.0046 mg/kg, 0.0028 mg/kg, 0.0011 mg/kg & 0.00003 mg/kg respectively) which is considered as a safe range. The optimized extraction conditions were a solvent concentration of 93.64%, a temperature of 38.18°C, and a time of 73.64 min. The actual value of the flavonoid content of CPH obtained was 1038.94 µmoL Fe2+/L, which is acceptable compared to the predicted value of 1039.40 µmoL Fe2+/L. The discovery from this research represents a significant contribution towards finding cocoa pod husk from a plentiful, affordable, and feasible source, which could potentially be used in various fields such as pharmaceutical, medical, and nutraceuticals.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdul Karim, A. & Abdullah, N.A. 2021. Process condition optimization for solvent extraction Of cocoa pod by polyphenols antioxidant level and activities. Malaysian Cocoa Journal, 13(2): 2021.

Abdul Karim, A., Azlan, A., Ismail, A., Hashim, P., Abd Gani, S.S., Zainudin, B.H. & Abdullah, N.A. 2016. Efficacy of cocoa pod extract as antiwrinkle gel on human skin surface. Journal of Cosmetic Dermatology, 15(3): 283-295. DOI: https://doi.org/10.1111/jocd.12218

Andres, A.I., Petron, M.J., Lopez, A.M. & Timon, M.L. 2020. Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers' spent grain using response surface methodology (RSM). Foods, 9(10): 1398. DOI: https://doi.org/10.3390/foods9101398

AOAC 1975. Official Methods of Analysis. Washington DC, Association of Official Analytical Chemists.

AOAC 1984. Official Methods of Analysis. Arlington, Association of Official Analytical Chemists.

AOAC 2000. Official Methods of Analysis. Gaitherburg, Md., Association of Official Analytical Chemists.

Ara, A. & Usmani, J.A. 2015. Lead toxicity: A review. Interdisciplinary toxicology, 8(2): 55. DOI: https://doi.org/10.1515/intox-2015-0009

Assa, A., Noor, A., Yunus, M.R., Misnawi & Djide, M.N. 2018. Heavy metal concentrations in cocoa beans (Theobroma cacao L.) originating from East Luwu, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 979: 012011. DOI: https://doi.org/10.1088/1742-6596/979/1/012011

Atere, C.T., Osunde, M.O. & Olayinka, A. 2020. Microbial dynamics and nutrient mineralization in soil amended with cacao pod and water hyacinth composts: implication for nitrogen fixed by soybean. Communications in Soil Science and Plant Analysis, 51(19): 2466-2478. DOI: https://doi.org/10.1080/00103624.2020.1836202

Benzie, I.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1): 70-76. DOI: https://doi.org/10.1006/abio.1996.0292

Berlim, L.S., Bezerra Jr, A.G., Pazin, W.M., Ramin, T.S., Schreiner, W.H. & Ito, A.S. 2018. Photophysical properties of flavonoids extracted from Syngonanthus nitens, the golden grass. Journal of Luminescence, 194: 394-400. DOI: https://doi.org/10.1016/j.jlumin.2017.10.040

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5): 965-977. DOI: https://doi.org/10.1016/j.talanta.2008.05.019

Box, G.E. & Wilson, K.B. 1992. On the experimental attainment of optimum conditions. In Breakthroughs in Statistics. S. Kotz and N.L. Johnson (Eds.) Springer, New York. pp. 270-310. DOI: https://doi.org/10.1007/978-1-4612-4380-9_23

FAO/WHO. 1984. List of maximum levels recommended for contaminants by the Joint FAO/ WHO Codex Alimentarius Commission. Second Series.

Figueira, A., Janick, J. & BeMiller, J.N. 1993. New products from Theobroma cacao: Seed pulp and pod gum. New Crops, 475: 478.

Food-Act-281 1994. Law of Malaysia: Food Act and Regulations Act 281. Food Regulations 1985. Ulu Kelang, Kuala Lumpur, MDC Publisher Sdn Bhd. 2011 edition.

Gyedu-Akoto, E., Yabani, D., Sefa, J. & Owusu, D. 2015. Natural skin-care products: The case of soap made from cocoa pod husk potash. Advances in Research, 4(6): 365-370. DOI: https://doi.org/10.9734/AIR/2015/17029

He, W., Gao, Y., Yuan, F., Bao, Y., Liu, F. & Dong, J. 2010. Optimization of supercritical carbon dioxide extraction of Gardenia fruit oil and the analysis of functional components. Journal of the American Oil Chemists' Society, 87(9): 1071-1079. DOI: https://doi.org/10.1007/s11746-010-1592-z

Hromádková, Z., Košt'Álová, Z. & Ebringerová, A. 2008. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6): 1062-1068. DOI: https://doi.org/10.1016/j.ultsonch.2008.04.008

Jafari, S., Karami, Z., Shiekh, K.A., Kijpatanasilp, I., Worobo, R.W. & Assatarakul, K. 2023. Ultrasound-assisted extraction of bioactive compounds from cocoa shell and their encapsulation in gum arabic and maltodextrin: A technology to produce functional food ingredients. Foods, 12(2): 412. DOI: https://doi.org/10.3390/foods12020412

Kilama, G., Lating, P.O., Byaruhanga, J. & Biira, S. 2019. Quantification and characterization of cocoa pod husks for electricity generation in Uganda. Energy, Sustainability and Society, 9(1): 1-11. DOI: https://doi.org/10.1186/s13705-019-0205-4

Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N.J., Shaw, L., Robinson, J.S., Warren, G., Chatzifragkou, A., Mason, S.M., Leonardo, G., Faas, L., Balcombe, K., Srinivasan, C., Picchioni, F., Hadley, P. & Charalampopoulos, D. 2018. Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14: 80-88. DOI: https://doi.org/10.1016/j.cogsc.2018.07.007

Maran, J.P., Manikandan, S., Nivetha, C.V. & Dinesh, R. 2017. Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arabian journal of chemistry, 10: S1145-S1157. DOI: https://doi.org/10.1016/j.arabjc.2013.02.007

McCleary, B.V. & McLoughlin, C. 2021. Measurement of available carbohydrates in cereal and cereal products, dairy products, vegetables, fruit, and related food products and animal feeds: First action 2020.07. Journal of AOAC International, 104(6): 1465-1478. DOI: https://doi.org/10.1093/jaoacint/qsab019

Md Yusof, A.H.H., Abd Gani, S.S., Zaidan, U.H., Halmi, M.I.E. & Abdul Wahab, N. 2019. Optimization of central composite design of ferric reducing antioxidant power from cocoa (Theobroma cacao) shell using ultrasound-assisted technique. International Journal of Recent Technology and Engineering 8(2 Special Issue 2): 80-85. DOI: https://doi.org/10.35940/ijrte.B1015.0782S219

Muñoz-Almagro, N., Valadez-Carmona, L., Mendiola, J.A., Ibáñez, E. & Villamiel, M. 2019. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydrate Polymers, 217: 69-78. DOI: https://doi.org/10.1016/j.carbpol.2019.04.040

Oludemi, T., Barros, L., Prieto, M.A., Heleno, S.A., Barreiro, M.F. & Ferreira, I.C. 2018. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology. Food & Function, 9(1): 209-226. DOI: https://doi.org/10.1039/C7FO01601H

Othman, A., Ismail, A., Ghani, N.A. & Adenan, I. 2007. Antioxidant capacity and phenolic content of cocoa beans. Food Chemistry, 100(4): 1523-1530. DOI: https://doi.org/10.1016/j.foodchem.2005.12.021

Ouattara, L.Y., Kouassi, E.K.A., Soro, D., Soro, Y., Yao, K.B., Adouby, K., Drogui, A.P., Tyagi, D.R. & Aina, P.M. 2021. Cocoa pod husks as potential sources of renewable high-value-added products: A review of current valorizations and future prospects. BioResources, 16(1): 1988. DOI: https://doi.org/10.15376/biores.16.1.Ouattara

Rojo-Poveda, O., Barbosa-Pereira, L., Mateus-Reguengo, L., Bertolino, M., Stévigny, C. & Zeppa, G. 2019. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients, 11(4): 867. DOI: https://doi.org/10.3390/nu11040867

Rojo-Poveda, O., Barbosa-Pereira, L., Zeppa, G. & Stévigny, C. 2020. Cocoa bean shell-a by-product with nutritional properties and biofunctional potential. Nutrients, 12(4): 1123. DOI: https://doi.org/10.3390/nu12041123

Sheng, Z.L., Wan, P.F., Dong, C.L. & Li, Y.H. 2013. Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Industrial Crops and Products, 43: 778-786. DOI: https://doi.org/10.1016/j.indcrop.2012.08.020

Sodeifian, G., Sajadian, S.A. & Ardestani, N.S. 2016. Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: Experimental and optimization. The Journal of Supercritical Fluids, 107: 137-144. DOI: https://doi.org/10.1016/j.supflu.2015.09.005

Tabaraki, R. & Nateghi, A. 2011. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics sonochemistry, 18(6): 1279-1286. DOI: https://doi.org/10.1016/j.ultsonch.2011.05.004

Tepe, O. & Dursun, A.Y. 2014. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environmental Science and Pollution Research, 21: 9911-9920. DOI: https://doi.org/10.1007/s11356-014-2833-8

U. S. Environmental Protection Agency. 1993. Standards for use or disposal of sewage sludge.

Uy, J.R., Careo, N.D., Llarena, D. & Barajas, J.R. 2019. Optimization of furfural extraction from Theobrama cacao wastes using response surface methodology. MATEC Web of Conferences, 268: 06010). DOI: https://doi.org/10.1051/matecconf/201926806010

Vriesmann, L.C. & de Oliveira Petkowicz, C.L. 2017. Cacao pod husks as a source of low-methoxyl, highly acetylated pectins able to gel in acidic media. International journal of Biological Macromolecules, 101: 146-152. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.082

Vriesmann, L.C., de Mello Castanho Amboni, R.D. & de Oliveira Petkowicz, C.L. 2011. Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Industrial Crops and Products, 34(1): 1173-1181. DOI: https://doi.org/10.1016/j.indcrop.2011.04.004

Wang, Y., Gao, Y., Ding, H., Liu, S., Han, X., Gui, J. & Liu, D. 2017. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry, 218: 152-158. DOI: https://doi.org/10.1016/j.foodchem.2016.09.058

Zaidan, U.H., Abdul Karim, N., Ahmad, S., Abd Ghani, S. S. & Effendi, H. 2019. Nutraceutical evaluation and antioxidant potential of red kidney bean (Phaseolus vulgaris) and chickpea (Cicer arietenum) seed coats. Asian Journal of Agriculture and Biology, 7(1): 19-26.

Zhang, L., Jiang, Y., Pang, X., Hua, P., Gao, X., Li, Q. & Li, Z. 2019. Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of Angelica keiskei using response surface methodology (RSM). Molecules, 24(19): 3461. DOI: https://doi.org/10.3390/molecules24193461

Published

30-12-2023

How to Cite

Azhar, N. H., Zaidan, U. H., Shamsi, S., Abd Gani, S. S., & Md Yusof, A. H. (2023). Nutritional Composition and Optimization of Extraction Conditions of Cocoa Pod Husk using Response Surface Methodology. Malaysian Applied Biology, 52(6), 127–135. https://doi.org/10.55230/mabjournal.v52i6.2730

Issue

Section

Research Articles