RAD50 Deficiency and Its Effects on Zebrafish Embryonic Development and DNA Repair Mechanisms

https://doi.org/10.55230/mabjournal.v53i4.3077

Authors

  • Nahid Khalili Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Shazrul Fazry Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre of Excellence, Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Tasik Chini Research Center, The Centre for Natural and Physical Laboratory Management UKM, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Ibrahim Mahmood Dentistry department, Al-Rafidain University College, Baghdad, Iraq
  • Ahmed Najm Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Ahmad Azfaralariff Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Douglas Law Faculty of Health and Life Sciences, Inti International University, 71800 Nilai, Negeri Sembilan, Malaysia

Keywords:

ATM protein, DNA damage, human health, MRN complex, RAD50 gene

Abstract

The MRE11-RAD50-NBS1 (MRN) complex is essential in detecting, signaling, and repairing DNA double-strand breaks (DSBs), thus maintaining genomic integrity. Mutations in RAD50 are linked to severe conditions such as microcephaly, mental retardation, and growth retardation in humans. This study investigates the developmental impact of RAD50 protein disruption in zebrafish embryos. Zebrafish embryos were treated with MIRIN (35 µM) to inhibit RAD50 and subsequently exposed to gamma-ray irradiation (15 Gy) to analyze the role of RAD50 in managing DNA damage during embryogenesis. Time-point analysis indicated that inhibiting RAD50 and ATM proteins during early embryonic stages (at 1 hpf) leads to increased embryonic mortality and abnormalities. These adverse effects were exacerbated by irradiation, underscoring the critical role of RAD50 in DNA DSB repair. The study concludes that RAD50 deficiencies can lead to embryonic lethality and human deformities due to the inability of tissues to repair DNA DSBs effectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Costa, S. & Reagan, M.R. 2019. Therapeutic irradiation: Consequences for bone and bone marrow adipose tissue. Frontiers in Endocrinology, 10: 587. DOI: https://doi.org/10.3389/fendo.2019.00587

Dupré, A., Boyer-Chatenet, L., Sattler, R.M., Modi, A.P., Lee, J.-H., Nicolette, M.L. & Kopelovich, L. 2008. A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nature chemical biology, 4(2): 119-25. DOI: https://doi.org/10.1038/nchembio.63

Enguita-Marruedo, A., Martín-Ruiz, M., García, E., Gil-Fernández, A., Parra, M.T., Viera, A., Rufas, J.S. & Page, J. 2019. Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genetic, 15: e1007439. DOI: https://doi.org/10.1371/journal.pgen.1007439

Fazry, S., Kumaran, M., Khalili, N., Mahmood, I., Dyari, H.R.E. & Jamar, N.H. 2019. MRN complex and ATM kinase inhibitors impacts towards UVC-treated zebrafish embryonic development. Pertanika Journal of Science and Technology, 27: 1615-24.

Gagnaire, B., Cavalié, I., Pereira, S., Floriani, M., Dubourg, N., Camilleri, V. & Adam-Guillermin, C. 2015. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio. Aquatic Toxicology, 169: 69-78. DOI: https://doi.org/10.1016/j.aquatox.2015.10.005

Gao, G., Bi, X., Chen, J., Srikanta, D. & Rong, Y. S. 2009. Mre11-Rad50-Nbs complex is required to cap telomeres during Drosophila embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106(26): 10728-10733. DOI: https://doi.org/10.1073/pnas.0902707106

Gatei, M., Jakob, B., Chen, P., Kijas, A.W., Becherel, O.J., Gueven, N., Birrell, G., Lee, J. H., Paull, T.T., Lerenthal, Y., Fazry, S., Taucher-Scholz, G., Kalb, R., Schindler, D., Waltes, R. & Dörk, T. 2011. ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. Journal of Biological Chemistry, 286(36): 31542-31556. DOI: https://doi.org/10.1074/jbc.M111.258152

Geiger, G.A., Parker, S.E., Beothy, A.P., Tucker, J.A., Mullins, M.C. & Kao, G.D. 2006. Zebrafish as a "biosensor"? Effects of ionizing radiation and amifostine on embryonic viability and development. Cancer Research, 66(16): 8172-8181. DOI: https://doi.org/10.1158/0008-5472.CAN-06-0466

Guo, P., Huang, Z., Tao, T., Chen, X., Zhang, W., Zhang, Y. & Lin, C. 2015. Zebrafish as a model for studying the developmental neurotoxicity of propofol. Journal of Applied Toxicology, 35(12): 1511-1519. DOI: https://doi.org/10.1002/jat.3183

Hopfner, K.P., Karcher, A., Shin, D.S., Craig, L., Arthur, L.M., Carney, J.P. & Tainer, J.A. 2000. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell, 101(7): 789-800. DOI: https://doi.org/10.1016/S0092-8674(00)80890-9

Hudson, D., Kovalchuk, I., Koturbash, I., Kolb, B., Martin, O.A. & Kovalchuk, O. 2011. Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals. Aging, 3(6): 609-20. DOI: https://doi.org/10.18632/aging.100340

Hunter, N. 2015. Meiotic recombination: The essence of heredity. Cold Spring Harb Perspect Biology, 7(12): a016618. DOI: https://doi.org/10.1101/cshperspect.a016618

Lamarche, B.J., Orazio, N.I. & Weitzman, M.D. 2010. The MRN complex in double-strand break repair and telomere maintenance. FEBS Letters, 584(17): 3682-3695. DOI: https://doi.org/10.1016/j.febslet.2010.07.029

Mena, P., Allende, M. & Morales, J.R. 2010. Survival study of zebrafish embryos under gamma irradiation. AIP Conference Proceedings, 1265: 455-456. DOI: https://doi.org/10.1063/1.3480235

Murat El Houdigui, S., Adam-Guillermin, C. & Loro, G. 2019. A systems biology approach reveals neuronal and muscle developmental defects after chronic exposure to ionising radiation in zebrafish. Scintefic Reports, 9: 20241. DOI: https://doi.org/10.1038/s41598-019-56590-w

O'Driscoll, M. & Jeggo, P.A. 2008. The role of the DNA damage response pathways in brain development and microcephaly: Insight from human disorders. DNA Repair (Amst), 7(7): 1039-50. DOI: https://doi.org/10.1016/j.dnarep.2008.03.018

Paull, T.T. & Lee, J.-H. 2005. The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle, 4(6): 737-740. DOI: https://doi.org/10.4161/cc.4.6.1715

Rhee, H.W, Zou, P., Udeshi, N.D, Martell, J.D, Mootha, V.K., Carr, S.A. & Ting, A.Y. 2013. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 339(6125): 1328-1331. DOI: https://doi.org/10.1126/science.1230593

Schmidt, R., Strähle, U. & Scholpp, S. 2013, February 21. Neurogenesis in zebrafish - from embryo to adult. Neural Development, 8(1): 1-13. DOI: https://doi.org/10.1186/1749-8104-8-3

Schneider, L., Pellegatta, S., Favaro, R., Pisati, F., Roncaglia, P., Testa, G., Nicolis, S.K., Finocchiaro, G. & d'Adda di Fagagna, F. 2013. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Reports, 25;1(2):123-138. DOI: https://doi.org/10.1016/j.stemcr.2013.06.004

Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M.M. & Maity, R. 2014. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Molecular Cell, 53(1): 7-18. DOI: https://doi.org/10.1016/j.molcel.2013.11.003

Shiloh, Y. & Ziv, Y. 2013. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology, 14(4), 197-210. DOI: https://doi.org/10.1038/nrm3546

Sidi, S., Sanda, T., Kennedy, R.D., Hagen, A.T., Jette, C.A., Hoffmans, R., Pascual, J., Imamura, S., Kishi, S., Amatruda, J.F., Kanki, J.P., Green, D.R., D'Andrea, A.A. & Look, A.T. 2008. Chk1 Suppresses a Caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and Caspase-3. Cell, 133(5): 864-877. DOI: https://doi.org/10.1016/j.cell.2008.03.037

Syed, A. & Tainer, J.A. 2018. The MRE11-RAD50-NBS1 Complex Conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annual Review of Biochemistry, 87: 263-294. DOI: https://doi.org/10.1146/annurev-biochem-062917-012415

Waltes, R., Kalb, R., Gatei, M., Kijas, A. W., Stumm, M., Sobeck, A. & Wieland, B. 2009. Human RAD50 deficiency in a nijmegen breakage syndrome-like disorder. The American Journal of Human Genetics, 84(5): 605-616. DOI: https://doi.org/10.1016/j.ajhg.2009.04.010

Zhao, M., Smith, L., Volpatti, J., Fabian, L. & Dowling, J.J. 2019. Insights into wild-type dynamin 2 and the consequences of DNM2 mutations from transgenic zebrafish. Human Molecular Genetics, 28: 4186-4196. DOI: https://doi.org/10.1093/hmg/ddz260

Published

27-10-2024

How to Cite

Khalili, N. ., Fazry, S., Mahmood, I., Najm, A., Azfaralariff, A., & Law, D. (2024). RAD50 Deficiency and Its Effects on Zebrafish Embryonic Development and DNA Repair Mechanisms. Malaysian Applied Biology, 53(4), 27–42. https://doi.org/10.55230/mabjournal.v53i4.3077

Funding data

Most read articles by the same author(s)