Transportation and Acclimation Optimisation of Wild Marble Goby (Oxyeleotris marmorata Bleeker, 1852)

https://doi.org/10.55230/mabjournal.v51i5.2399

Authors

  • Douglas Law Faculty of Health and Life Sciences, Inti International University, 71800 Nilai, Negeri Sembilan
  • Nik Marzuki Sidik Faculty of Agrobased Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan https://orcid.org/0000-0002-7687-0358
  • Herryawan Ryadi Eziwar Dyari Department of Earth Sciences and Environmental, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia https://orcid.org/0000-0002-4327-1180
  • Ahmed Najm Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Muhammad Shahid Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
  • Nur Amelia Abas Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
  • Muhamad Syahmin Aiman Shahrir Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
  • Shazrul Fazry Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia

Keywords:

Transportation stress, water stress, tank adaptation, Oxyeleotris marmorata

Abstract

The Marble goby (Oxyeleotris marmorata Bleeker) is usually found in freshwater bodies. Due to its high commercial value and demand, it is farmed in cages and pond systems. Marble goby fish are preferred to be freshly killed and processed upon request in Asian restaurants. Currently, there are some challenges faced by fishermen who wish to transport live fish to restaurants or markets due to the traditional method of using water tanks as carriers. These water tanks are usually very heavy and bulky, increasing transportation costs. Furthermore, coping with the survivability of fish post-transportation has proven to be a challenge. This study was aimed at investigating the semi-dry method for fish transport and acclimatization of fish after transport in different tank sizes. In the semi-dry, where fish were covered using a towel transportation method where the survival rate at ~92%. For the acclimation experimental group, stream water was found to be the most appropriate type of water for rearing the marble goby fish, which demonstrated a conspicuous survivability rate of ~83%. whereas, for adaptation, marble goby fish from the wild had a faster adaptation rate in smaller spaces like aquariums as compared to large ‘stock tanks.’ To the best of our knowledge, this is the first study that will provide a better understanding of the transportation method, acclimation conditions, and habitat that can lead to a reduction in the mortality rate during the marble goby transit processes. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Bittencourt, F., Damasceno, D.Z., Lui, T.A., Signor, A., Sanches, E.A. & Neu, D.H. 2018. Water quality and survival rate of Rhamdia quelen fry subjected to simulated transportation at different stock densities and temperatures. Acta Scientiarum, 40: 1-8. DOI: https://doi.org/10.4025/actascianimsci.v40i1.37285

Carneiro, P. & Urbinati, E.C. 2002. Transport stress in matrinxã, Brycon cephalus (Teleostei: Characidae), at different densities. Aquaculture International, 10: 221-229.

Chew, S.F., Tng, Y.Y., Wee, N.L., Wilson, J.M. & Ip, Y.K. 2009. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 154: 360-369. DOI: https://doi.org/10.1016/j.cbpa.2009.07.005

Das, P.C., Mishra, B., Pati, B.K. & Mishra, S.S. 2015. Critical water quality parameters affecting survival of Labeo rohita (Hamilton) fry during closed system transportation. Indian Journal of Fisheries, 62: 39-42.

Dhanasiri, A.K., Fernandes, J.M. & Kiron, V. 2013. Acclimation of zebrafish to transport stress. Zebrafish, 10: 87-98. DOI: https://doi.org/10.1089/zeb.2012.0843

Fazry, S., Azizan, A., Dawa, Z.N., Abd Ghani, N.F., Roselan, N.F.F., Noordin, M.A.M., Kumaran, M., Dyari, H.R.E., Lazim, A.M., Aziz, L.A. & Othman, B.A. 2017. Perlakuan ikan zebra, Danio rerio di bawah aruhan tekanan bunyi, pemangsa dan persekitaran baru. Malaysian Applied Biology, 46(1): 1-8.

Harmon, T.S. 2009. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: a review of the basics. Reviews in Aquaculture, 1: 58-66. DOI: https://doi.org/10.1111/j.1753-5131.2008.01003.x

Herawati, T., Yustiati, A., Nurhayati, A. & Natadia, S.S. 2016. Domestication of marble goby [Oxyeleotris marmorata (Bleeker, 1852)] indogenous fish of Citarum River, Indonesia. Aquatic Procedia, 7: 247-253. DOI: https://doi.org/10.1016/j.aqpro.2016.07.035

Herawati, T., Putra, M.A., Rostini, I., Nurhayati, A., Yustiati, A. & Subhan, U. 2017. Marble Goby (Oxyeleotris marmorata Bleeker, 1852) Habitat mapping on Cirata Reservoir in West Java Province, Indonesia. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 54(4): 341-352.

Ishibashi, Y., Izumi, T., Kurata, M. & Okada, T. 2013. Effects of tank wall pattern on survival, bone injury rate, and stress response of juvenile Pacific bluefin tuna, Thunnus orientalis. Aquacultural Engineering, 56: 13-17. DOI: https://doi.org/10.1016/j.aquaeng.2013.03.004

Lam, S.S., Ambak, M.A., Jusoh, A. & Law, A.T. 2008. Waste excretion of marble goby (Oxyeleotris marmorata Bleeker) fed with different diets. Aquaculture, 274: 49-56. DOI: https://doi.org/10.1016/j.aquaculture.2007.11.023

Lam, S.S., Ambak, M.A., Jusoh, A. & Law, A.T. 2014a. Growth performance and waste excretion of marble goby (Oxyeleotris Marmorata Bleeker) in relation to different culture system and diet. Journal of Aquaculture in the Tropics, 29(1/2):41-59.

Lam, S.S., Ma, N.L., Jusoh, A. & Ambak, M.A. 2014b. A study on the optimal tank design and feed type to the growth of marble goby (Oxyeleotris marmorata Bleeker) and reduction of waste in a recirculating aquaponic system. Desalination and Water Treatment, 52: 1044-1053. DOI: https://doi.org/10.1080/19443994.2013.826854

Larson, H.K. & Murdy, E.O. 2001. Eleotrididae. Sleepers (gudgeons). In: FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific Vol. 6. Bony fishes part 4 (Labridae to Latimeriidae), estuarine crocodiles. FAO, Rome. pp. 3574-3577.

Law, D., Ping, V.C., Yee, T.C., Dyari, H.R.E., Mohamed, M.H., Fazry, S. & Sidik, N.M. 2021. Use of amplified fragment length polymorphism and sequence characterized amplified region marker for identifying the sex of the Oxyeleotris marmorata. Pertanika Journal of Tropical Agricultural Science, 44(1): 107-115. DOI: https://doi.org/10.47836/pjtas.44.1.06

Leal, E., Fernández-Durán, B., Guillot, R., Ríos, D. & Cerdá-Reverter, J. M. 2011. Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): a self-feeding approach. Journal of Comparative Physiology B, 181(8): 1035-1044. DOI: https://doi.org/10.1007/s00360-011-0585-z

Lim, L.S., Tan, S.Y., Tuzan, A.D., Kawamura, G., Mustafa, S., Rahmah, S. & Liew, H. J. 2020. Diel osmorespiration rhythms of juvenile marble goby (Oxyeleotris marmorata). Fish Physiology and Biochemistry, 46(4): 1621-1629. DOI: https://doi.org/10.1007/s10695-020-00817-5

Lin, C. & Kaewpaitoon, K. 2000. Overview of freshwater cage culture in Thailand. In: Proceedings of the First International Symposium on Cage Aquaculture in Asia. Asian Fisheries Society, Philippines. pp. 237–242.

Marchesan, M., Spoto, M. & E.A. Ferrero, 2009. Impact of artificial light on behavioural patterns of coastal fishes of conservation interest. Varstvo Narave, 22: 117-136.

Metar, S., Chogale, N., Shinde, K., Satam, S., Sadawarte, V., Sawant, A., Nirmale, V., Pagarkar, A. & Singh, H. 2018. Transportation of Live Marine ornamental fish. Advanced Agricultural Research & Technology Journal, 2(2): 206-208.

Nikoo, M. & Falahatkar, B. 2012. Physiological responses in wild broodstocks of the Caspian Kutum (Rutilus frisii kutum) subjected to transportation stress. Journal of Applied Animal Welfare Science, 15: 372-382. DOI: https://doi.org/10.1080/10888705.2012.709156

Okada, T., Nakatani, M., Sawada, Y., Miyashita, S., Kumai, H. & Ishibashi, Y. 2015. Effect of tank wall colour and pattern on the survival rate of juvenile Pacific bluefin tuna Thunnus orientalis (Temminck and Schlegel) during ship transportation. Aquaculture Research, 46: 446-452. DOI: https://doi.org/10.1111/are.12196

Pankhurst, N. & Kraak, G. 1997. Effects of stress on reproduction and growth of fish. In: Fish stress and health in aquaculture. G.K. Iwama, A.D. Pickering, J.P. Sumpter, and C.B. Schreck (Eds.). Cambridge University Press, Cambridge. pp. 73-93.

Parisi, M.A., Franklin, C.E. & Cramp, R.L. 2022. Can slowing the rate of water temperature decline be utilized to reduce the impacts of cold water pollution from dam releases on fish physiology and performance? Journal Fish Biology, 100(4): n979-987. DOI: https://doi.org/10.1111/jfb.15002

Paterson, B.D., Rimmer, M.A., Meikle, G.M. & Semmens, G.L. 2003. Physiological responses of the Asian sea bass, Lates calcarifer to water quality deterioration during simulated live transport: acidosis, red-cell swelling, and levels of ions and ammonia in the plasma. Aquaculture, 218: 717-728. DOI: https://doi.org/10.1016/S0044-8486(02)00564-1

Pavlidis, M., Angellotti, L., Papandroulakis, N. & Divanach, P. 2003. Evaluation of transportation procedures on water quality and fry performance in red porgy (Pagrus pagrus) fry. Aquaculture, 218: 187-202. DOI: https://doi.org/10.1016/S0044-8486(02)00314-9

Refaey, M.M. & Li, D. 2018. Transport stress changes blood biochemistry, antioxidant defense system, and hepatic HSPs mRNA expressions of channel catfish Ictalurus punctatus. Frontiers in Physiology, 9: 1628. DOI: https://doi.org/10.3389/fphys.2018.01628

Seetapan, K., Puanglarp, N. & Meunpol, O. 2012. Study of optimal culture conditions for juvenile marble goby (Oxyeleotris marmorata Bleeker, 1852). In: Proceedings of The Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter. Syiah Kuala University, Banda Aceh. pp. 1-5.

Tumwesigye, Z., Tumwesigye, W., Opio, F., Kemigabo, C. & Mujuni, B. 2022. The Effect of Water Quality on Aquaculture Productivity in Ibanda District, Uganda. Aquaculture Journal, 2(1): 23-36. DOI: https://doi.org/10.3390/aquacj2010003

Urbinati, E.C., de Abreu, J.S., da Silva Camargo, A.C. & Parra, M.A.L. 2004. Loading and transport stress of juvenile matrinxã (Brycon cephalus, Characidae) at various densities. Aquaculture, 229: 389-400. DOI: https://doi.org/10.1016/S0044-8486(03)00350-8

Vijayan, M. & Leatherland, J. 1990. High stocking density affects cortisol secretion and tissue distribution in brook charr, Salvelinus fontinalis. Journal of Endocrinology, 124: n311-318. DOI: https://doi.org/10.1677/joe.0.1240311

Published

26-12-2022

How to Cite

Law, D. ., Sidik, N. M., Dyari, H. R. E. ., Najm, A., Shahid, M., Abas, N. A., Shahrir, M. S. A. ., & Fazry, S. (2022). Transportation and Acclimation Optimisation of Wild Marble Goby (Oxyeleotris marmorata Bleeker, 1852). Malaysian Applied Biology, 51(5), 281–289. https://doi.org/10.55230/mabjournal.v51i5.2399