Isolation and Characterization of Antibacterial Actinomycetes from BRIS Soil in Setiu, Terengganu, Targeting ESKAPE Infections

https://doi.org/10.55230/mabjournal.v54i4.3372

Authors

  • Amirah Ahmad Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
  • Hamidah Idris Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
  • Mohd Fakharul Zaman Raja Yahya Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

Keywords:

Actinomycetes, BRIS soil, Antibacterial activity, ESKAPE pathogens

Abstract

Antibiotic resistance poses a significant challenge to global health, necessitating the discovery of novel antimicrobial agents. Actinomycetes are prolific producers of bioactive compounds, contributing to over two-thirds of clinically utilized antibiotics. While actinomycetes are widely recognized for their antibiotic production, little is known about those from BRIS soil in Setiu, Terengganu, and their antibacterial efficacy against ESKAPE pathogens remains unexplored. This study evaluated the antibacterial activity of actinomycetes isolated from BRIS soil in Setiu, Terengganu, specifically against ESKAPE pathogens. The isolates were characterized by color groups, extracted using ethyl acetate and methanol, and screened for antibacterial activity using a gel plug assay. A selected actinomycete isolate was further analyzed by gas chromatography-mass spectrometry (GC-MS), well diffusion (WD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays, along with molecular identification. The results showed that isolate BA71 exhibited the largest inhibition zones with both methanol and ethyl acetate extracts compared to the other isolates tested. GC-MS analysis of the ethyl acetate extract from isolate BA71 identified nine bioactive compounds, including stigmasta-5,24(28)-dien-3-ol, gamma sitosterol, and lupeol. The WD, MIC, and MBC assays further confirmed the isolate's bactericidal and bacteriostatic properties. Phylogenetic analysis based on 16S rRNA gene sequences revealed a close relationship between isolate BA71 and Streptomyces malaysiense MUSC 136T, with 100% similarity. These findings highlight the potential of BRIS soil-derived Streptomyces in the discovery of novel antibiotics, contributing to the ongoing search for effective treatments against ESKAPE pathogens.

Downloads

Download data is not yet available.

References

Abduljaba, M.H. & Salih, T.S. 2022. Antimicrobial activity of ten local actinobacterial strains against ESKAPE, Bacillus subtilis and Pseudomonas baetica pathogens. South Asian Journal of Research in Microbiology, 13(4): 1–10. DOI: https://doi.org/10.9734/sajrm/2022/v13i4253

Akhter, N., Liu, Y., Auckloo, B.N., Shi, Y., Wang, K., Chen, J., Wu, X. & Wu, B. 2018. Stress-driven discovery of new angucycline-type antibiotics from a marine Streptomyces pratensis NA-ZhouS1. Marine Drugs, 16(9): 331. DOI: https://doi.org/10.3390/md16090331

Bae, M., Kim, H., Shin, Y., Kim, B., Lee, S., Oh, K.B., Shin, J. & Oh, D.C. 2013. Separacenes A–D, novel polyene polyols from the marine actinomycete, Streptomyces sp. Marine Drugs, 11(8): 2882–2893. DOI: https://doi.org/10.3390/md11082882

Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y. & van Wezel, G.P. 2016. Taxonomy, physiology, and natural products of actinobacteria. Microbiology and Molecular Biology Reviews, 80(1): 1–43. DOI: https://doi.org/10.1128/MMBR.00019-15

Binayke, A., Ghorbel, S., Hmidet, N., Raut, A., Gunjal, A., Uzgare, A., Patil, N., Waghmode, M. & Nawani, N. 2018. Analysis of diversity of actinomycetes from arid and saline soils at Rajasthan, India. Environmental Sustainability, 1(1): 61–70. DOI: https://doi.org/10.1007/s42398-018-0003-5

Dar, M.S. & Ahmad, I. 2024. Screening and evaluation of antibacterial active strains of Actinomycetes isolated from Northern Indian soil for biofilm inhibition against selected ESKAPE pathogens. Journal of Umm Al-Qura University for Applied Sciences, 10: 562–577. DOI: https://doi.org/10.1007/s43994-024-00164-8

Dimri, A.G., Chauhan, A. & Aggarwal, M.L. 2020. Antibiotic potential of actinomycetes from different environments against human pathogens and microorganisms of industrial importance: a review. Science Archives, 1(1): 32–48. DOI: https://doi.org/10.47587/SA.2020.1102

El Karkouri, A., Assou, S.A. & El Hassouni, M. 2019. Isolation and screening of actinomycetes producing antimicrobial substances from an extreme Moroccan biotope. Pan African Medical Journal, 33: 329. DOI: https://doi.org/10.11604/pamj.2019.33.329.19018

Ezeobiora, C.E., Igbokwe, N.H., Amin, D.H., Enwuru, N.V., Okpalanwa, C.F. & Mendie, U.E. 2022. Uncovering the biodiversity and biosynthetic potentials of rare actinomycetes. Future Journal of Pharmaceutical Sciences, 8(1): 23. DOI: https://doi.org/10.1186/s43094-022-00410-y

Fiedler, H.P. 2014. Screening for bioactivity. In: Microbial Diversity and Bioprospecting. A.T. Bull (Ed.). ASM Press, Washington. pp. 324–335. DOI: https://doi.org/10.1128/9781555817770.ch30

Hamdan, H.F., Ross, E.E.R., Jalil, M.T.M., Hashim, M.A. & Yahya, M.F.Z.R. 2024. Antibiofilm efficacy and mode of action of Etlingera elatior extracts against Staphylococcus aureus. Malaysian Applied Biology, 53(1): 27–34. DOI: https://doi.org/10.55230/mabjournal.v53i1.2808

Hei, Y., Zhang, H., Tan, N., Zhou, Y., Wei, X., Hu, C., Liu, Y., Wang, L., Qi, J. & Gao, J.M. 2021. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with lichen symbiosis from Qinghai-Tibet Plateau. Microbiological Research, 244: 126652. DOI: https://doi.org/10.1016/j.micres.2020.126652

Ibnouf, E.O., Aldawsari, M.F. & Ali Waggiallah, H. 2022. Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi Journal of Biological Sciences, 29(8): 103352. DOI: https://doi.org/10.1016/j.sjbs.2022.103352

Isa, S.F.M., Hamid, U.M.A. & Yahya, M.F.Z.R. 2022. Treatment with the combined antimicrobials triggers proteomic changes in P. aeruginosa–C. albicans polyspecies biofilms. ScienceAsia, 48(2): 215–222. DOI: https://doi.org/10.2306/scienceasia1513-1874.2022.020

Johari, N.A., Aazmi, M.S. & Yahya, M.F.Z.R. 2023. FTIR spectroscopic study of inhibition of chloroxylenol-based disinfectant against Salmonella enterica serovar Thyphimurium biofilm. Malaysian Applied Biology, 52(2): 97–107. DOI: https://doi.org/10.55230/mabjournal.v52i2.2614

Kamaruzzaman, A.N.A., Mulok, T.E.T.Z., Nor, N.H.M. & Yahya, M.F.Z.R. 2022. FTIR spectral changes in Candida albicans biofilm following exposure to antifungals. Malaysian Applied Biology, 51(4): 57–66. DOI: https://doi.org/10.55230/mabjournal.v51i4.11

Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S. & Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62(3): 716–721. DOI: https://doi.org/10.1099/ijs.0.038075-0

Kuete, V. 2010. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Medica, 76(14): 1479–1491. DOI: https://doi.org/10.1055/s-0030-1250027

Kumar, S. 2021. Antimicrobial resistance: A top ten global public health threat. EClinicalMedicine, 41: 101221. DOI: https://doi.org/10.1016/j.eclinm.2021.101221

Lam, K.S. 2006. Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9(3): 245–251. DOI: https://doi.org/10.1016/j.mib.2006.03.004

Li, Q., Chen, X., Jiang, Y. & Jiang, C. 2016. Morphological identification of actinobacteria. In: Actinobacteria—Basics and Biotechnological Applications. D. Dhanasekaran & Y. Jiang (Eds.). InTech, Rijeka. pp. 59–86. DOI: https://doi.org/10.5772/61461

Makade, C.S., Shenoi, P.R., Bhongade, B.A., Shingane, S.A., Ambulkar, P.C. & Shewale, A.M. 2024. Estimation of MBC: MIC ratio of herbal extracts against common endodontic pathogens. Journal of Pharmacy and Bioallied Sciences, 16(Suppl 2): S1414–S1416. DOI: https://doi.org/10.4103/jpbs.jpbs_735_23

Man, C.A.I.C., Razak, W.R.W.A. & Yahya, M.F.Z.R. 2022. Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. Malaysian Applied Biology, 51(4): 45–56. DOI: https://doi.org/10.55230/mabjournal.v51i4.10

Manoharan, N. 2018. Antibacterial effect of endophytic actinomycetes from marine algae against multi drug resistant gram negative bacteria. Examines in Marine Biology & Oceanography, 1(5): 555572. DOI: https://doi.org/10.31031/EIMBO.2018.01.000522

Mazumdar, R. & Thakur, D. 2024. Antibacterial activity and biosynthetic potential of Streptomyces sp. PBR19, isolated from forest rhizosphere soil of Assam. Brazilian Journal of Microbiology, 55(4): 3335–3352. DOI: https://doi.org/10.1007/s42770-024-01454-3

Mogana, R., Adhikari, A., Tzar, M.N., Ramliza, R. & Wiart, C. 2020. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Medicine and Therapies, 20(1): 55. DOI: https://doi.org/10.1186/s12906-020-2837-5

Mustapha, Z., Mat, N., Othman, R. & Zakaria, A.J. 2017. Quantification of BRIS soil bacteria at Tembila, Besut Terengganu. Agrivita, 39(3): 252–256. DOI: https://doi.org/10.17503/agrivita.v39i3.1292

Nafis, A., Raklami, A., Bechtaoui, N., Khalloufi, F.El, Alaoui, A.El, Glick, B.R., Hafidi, M., Kouisni, L., Ouhdouch, Y. & Hassani, L. 2019. Actinobacteria from extreme niches in Morocco and their plant growth-promoting potentials. Diversity, 11(8): 139. DOI: https://doi.org/10.3390/d11080139

Ozturk, S. & Ercisli, S. 2006. Chemical composition and in vitro antibacterial activity of Seseli libanotis. World Journal of Microbiology and Biotechnology, 22(3): 261–265. DOI: https://doi.org/10.1007/s11274-005-9029-9

Paul, S., Saha, S., Panigrahi, S., Sengupta, D., Das, S., Chatterjee, A., Chattopadhyay, D., Manna, A., Roy, S., Khanra, R., Tripathy, S., Ghosh, C. & Khanra, K. 2024. Antimicrobial activity, phytochemical screening by HPTLC, FTIR and GC-MS of the extracts of Cissus quadrangularis (L). African Journal of Biomedical Research, 27(1S): 1203–1220. DOI: https://doi.org/10.53555/AJBR.v27i1S.1212

Ríos, J.L. & Recio, M.C. 2005. Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1–2): 80–84. DOI: https://doi.org/10.1016/j.jep.2005.04.025

Rosandy, A.R., Ishak, S.S.O., Sabri, N.A., Ahmad, W.Y.W. & Al Muqarrabun, L.M.R. 2021. Antibacterial activity of lupeol from the bark of Dehaasia cuneate (Lauraceae). Current Research on Biosciences and Biotechnology, 2(2): 145–148. DOI: https://doi.org/10.5614/crbb.2021.2.2/BOFY6724

Safini, I.N.M., Zakaria, N.F.S., Saad, M.I.H., Yahya, M.F.Z. & Jamil, N.M. 2024. Understanding bacterial persistence under antibiotic pressure: a review. Science Letters, 18(2): 56–69.

Selim, M.S.M., Abdelhamid, S.A. & Mohamed, S.S. 2021. Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology, 19(1): 72. DOI: https://doi.org/10.1186/s43141-021-00156-9

Sivasankar, P., Rekadwad, B., Poongodi, S., Sivakumar, K., Venkateswaran Parli, B. & Kumar, N.A. 2018. Bioinformatics delimitation of the psychrophilic and psychrotolerant actinobacteria isolated from the Polar Frontal waters of the Southern Ocean. Data in Brief, 18: 576–584. DOI: https://doi.org/10.1016/j.dib.2018.03.014

Tamura, K., Stecher, G. & Kumar, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38(7): 3022–3027. DOI: https://doi.org/10.1093/molbev/msab120

Vijayakumar, R., Muthukumar, C., Thajuddin, N., Panneerselvam, A. & Saravanamuthu, R. 2007. Studies on the diversity of actinomycetes in the Palk Strait region of Bay of Bengal, India. Actinomycetologica, 21(2): 59–65. DOI: https://doi.org/10.3209/saj.SAJ210203

Wang, Y.C., Li, W.Y., Wu, D.C., Wang, J.J., Wu, C.H., Liao, J.J. & Lin, C.K. 2011. In vitro activity of 2-methoxy-1,4-naphthoquinone and stigmasta-7,22-diene-3β-ol from Impatiens balsamina L. against multiple antibiotic-resistant Helicobacter pylori. Evidence-Based Complementary and Alternative Medicine, 2011: 704721. DOI: https://doi.org/10.1093/ecam/nep147

Yahya, M.F.Z.R., Jalil, M.T.M., Jamil, N.M., Nor, N.H.M., Alhajj, N., Siburian, R. & Majid, N.A. 2025. Biofilms and multidrug resistance: an emerging crisis and the need for multidisciplinary interventions. Frontiers in Bioengineering and Biotechnology, 13: 1625356. DOI: https://doi.org/10.3389/fbioe.2025.1625356

Published

21-12-2025

How to Cite

Amirah Ahmad, Idris, H., & Yahya, M. F. Z. R. (2025). Isolation and Characterization of Antibacterial Actinomycetes from BRIS Soil in Setiu, Terengganu, Targeting ESKAPE Infections. Malaysian Applied Biology, 54(4), 98–105. https://doi.org/10.55230/mabjournal.v54i4.3372

Issue

Section

Research Articles

Most read articles by the same author(s)