POTENTIAL MEDICINAL HERB FOR CARDIOVASCULAR HEALTH: A COMPREHENSIVE REVIEW ON Salviae miltiorrhizae
Keywords:
hypercholesterolemia, hyperlipidaemia, hypertension, diabetes, atheroslerosis, hyperlipidemiaAbstract
Cardiovascular disease (CVD) and its associated risk factors have been ranked the number 1 cause of mortality in non-communicable diseases worldwide and Malaysia. The high statistic in CVD mortality indicates gaps and limitations in current treatment strategies using long-term drug prescription therapies. Hence, an immediate quest for alternative and effective treatments is needed. Medicinal herbs, which are ethnopharmacologically used to treat a wide range of conditions, have been used as an alternative or supplementary treatment for CVDs and their associated risk factors. The roots of Salviae miltiorrhizae have been traditionally used for centuries to treat various diseases including neurological disorders, cancer, and even coronary heart disease. Increasing evidence demonstrated a pharmacological basis for the action of S. miltiorrhizae and its active compounds, suggesting its potential in treating CVD. The objectives of this review were first to summarize published literature and synthesize the new body of knowledge on the use of S. miltiorrhizae as the potential medicinal herb that will positively impact the cardiovascular system, and secondly to elucidate the underlying mechanisms involved in promoting cardiovascular health. It is hoped that identification of key regulatory pathways by lipophilic and hydrophilic active compounds from S. miltiorrhizae will aid further investigation of its safety and efficacy to promote the use of evidence-based traditional medicinal herbs in alleviating symptoms and improve the prognosis of CVDs and their associated risk factors.
Downloads
Metrics
References
Ai, F., Chen, M., Li, W., Yang, Y., Xu, G., Gui, F., Liu, Z., Bai, X. & Chen, Z. 2015. Danshen improves damaged cardiac angiogenesis and cardiac function induced by myocardial infarction by modulating HIF1α/VEGFA signaling pathway. International Journal of Clinical and Experimental Medicine, 8(10): 18311-18318.
Aung, H.H., Altman, R., Nyunt, T., Kim, J., Nuthikattu, S., Budamagunta, M., Voss, J.C., Wilson, D., Rutledge, J.C., & Villablanca, A.C. 2016. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways. Journal of Lipid Research, 57(6): 955-968. DOI: https://doi.org/10.1194/jlr.M061853
Bergman, M.R., Kao, R.H., McCune, S.A. & Holycross, B.J. 1999. Myocardial tumor necrosis factor-α secretion in hypertensive and heart failure-prone rats. The American Journal of Physiology, 277(2): H543-H550. DOI: https://doi.org/10.1152/ajpheart.1999.277.2.H543
Buja, L.M. & Heide, R.S.V. 2016. Pathobiology of ischemic heart disease: Past, present and future. Cardiovascular Pathology, 25(3): 214-220. DOI: https://doi.org/10.1016/j.carpath.2016.01.007
Chan, P., Chen, Y.C., Lin, L.J., Cheng, T.H., Anzai, K., Chen, Y.H., Liu, Z.M., Lin, J.G. & Hong, H.J. 2012. Tanshinone IIA attenuates H2O2-induced injury in human umbilical vein endothelial cells. American Journal of Chinese Medicine, 40(6): 1307-1319. DOI: https://doi.org/10.1142/S0192415X12500966
Chen, H.H. & Wang, D.L. 2004. Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells. Molecular Pharmacology, 65(5): 1130-1140. DOI: https://doi.org/10.1124/mol.65.5.1130
Cheng, K.T., Ong, H.L., Liu. X & Ambudkar, I.S. 2013. Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Current Topics in Membranes, 71: 149-179. DOI: https://doi.org/10.1016/B978-0-12-407870-3.00007-X
Ding, M., Ye, T.X., Zhao, G.R., Yuan, Y.J. & Guo, Z.X. 2005. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factor-α. International Immunopharmacology, 5(11): 1641–1651. DOI: https://doi.org/10.1016/j.intimp.2005.05.005
Fang, J., Xu, S.W., Wang, P., Tang, F.T., Zhou, S.G., Gao, J., Chen, J.W., Huang, H.Q. & Liu, P.Q. 2010. Tanshinone II-A attenuates cardiac fibrosis and modulates collagen metabolism in rats with renovascular hypertension. Phytomedicine, 18(1): 58-64. DOI: https://doi.org/10.1016/j.phymed.2010.06.002
Fang, Z.Y., Lin, R., Yuan, B.X., Yang, G.D., Liu, Y. & Zhang, H. 2008. Tanshinone IIA downregulates the CD40 expression and decreases MMP-2 activity on atherosclerosis induced by high fatty diet in rabbit. Journal of Ethnopharmacology, 115(2): 217-222. DOI: https://doi.org/10.1016/j.jep.2007.09.025
Gerdes, N., Seijkens, T., Lievens, D., Kuijpers, M.J., Winkels, H., Projahn, D., Hartwig, H., Beckers, L., Megens, R.T., Boon, L., Noelle, R.J., Soehnlein, O., Heemskerk, J.W., Weber, C. & Lutgens, E. 2016. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(3): 482-490. DOI: https://doi.org/10.1161/ATVBAHA.115.307074
Giatromanolaki, A., Koukourakis, M.I., Pezzella, F., Sivridis, E., Turley, H., Harris, A.L. & Gatter, K.C. 2008. Phosphorylated VEGFR2/KDR receptors are widely expressed in B-cell non-Hodgkin’s lymphomas and correlate with hypoxia inducible factor activation. Hematological Oncology, 26(4): 219–224. DOI: https://doi.org/10.1002/hon.861
Greenfield, D.M. and Snowden, J.A. 2019. Cardiovascular diseases and metabolic syndrome. In: The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies. 7th Ed. E. Carreras, C. Dufour, M. Mohty and N. Kröger (Eds.). Springer, Cham, Switzerland. pp. 415-420. DOI: https://doi.org/10.1007/978-3-030-02278-5_55
Guarner-Lans, V., Ramírez-Higueras, A., Rubio-Ruiz, M.E., Castrejon-Tellez, V., Soto, M.E. & Perez-Torres, T. 2020. Early programming of adult systemic essential hypertension. International Journal of Molecular Sciences, 21(4): 1-28. DOI: https://doi.org/10.3390/ijms21041203
Han, B., Zhang, X., Zhang, Q., Zhao, G., Wei, J., Ma, S., Zhu, W. & Wei, M. 2011. Protective effects of salvianolate on microvascular flow in a porcine model of myocardial ischaemia and reperfusion. Archives of Cardiovascular Diseases, 104(5): 313-324. DOI: https://doi.org/10.1016/j.acvd.2011.02.004
He, S., Li, M., Ma, X., Lin, J. & Li, D. 2010. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12): 2621-2630. DOI: https://doi.org/10.1161/ATVBAHA.110.210492
Ho, A.W.Y., Wong, C.K. & Lam, C.W.K. 2008. Tumor necrosis factor-α up-regulates the expression of CCL2 and adhesion molecules of human proximal tubular epithelial cells through MAPK signaling pathways. Immunobiology, 213(7): 533-544. DOI: https://doi.org/10.1016/j.imbio.2008.01.003
Hong, H.J., Hsu, F.L., Tsai, S.C., Lin, C.H., Liu, J.C., Chen, J.J., Cheng, T.H. & Chan, P. 2012. Tanshinone IIA attenuates cyclic strain-induced endothelin-1 expression in human umbilical vein endothelial cells. Clinical and Experimental Pharmacology and Physiology, 39(1): 63–68. DOI: https://doi.org/10.1111/j.1440-1681.2011.05637.x
Jin, U.H., Suh, S.J., Chang, H.W., Son, J.K., Lee, S.H., Son, K.H., Chang, Y.C. & Kim, C.H. 2008. Tanshinone IIA from Salvia miltiorrhiza BUNGE inhibits human aortic smooth muscle cell migration and MMP-9 activity through AKT signaling pathway. Journal of Cellular Biochemistry, 104(1): 15-26. DOI: https://doi.org/10.1002/jcb.21599
Jin, Y.C., Kim, C.W., Kim, Y.M., Nizamutdinova, I.T., Ha, Y.M., Kim, H.J., Seo, H.G., Son, K.H., Jeon, S.J., Kang, S.S., Kim, Y.S., Kam, S.C., Lee, J.H. & Chang, K.C. 2009. Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-α-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. European Journal of Pharmacology, 614(1-3): 91-97. DOI: https://doi.org/10.1016/j.ejphar.2009.04.038
Johnson, J.L. 2017. Metalloproteinases in atherosclerosis. European Journal of Pharmacology, 816: 93-106. DOI: https://doi.org/10.1016/j.ejphar.2017.09.007
Kattoor, A.J., Pothineni, N.V.K., Palagiri, D. & Mehta, J.L. 2017. Oxidative stress in atherosclerosis. Current Atherosclerosis Reports, 19(11): 42. DOI: https://doi.org/10.1007/s11883-017-0678-6
Kawauchi, J., Zhang, C., Nobori, K., Hashimoto, Y., Adachi, M.T., Noda, A., Sunamori, N., Kitajima, S. 2002. Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-α-induced apoptosis through down-regulation of p53 transcription. Journal of Biological Chemistry, 277(41): 39025-39034. DOI: https://doi.org/10.1074/jbc.M202974200
Ke, Y.S., Wang, D.G., Wang, H.G. & Yang, S.Y. 2004. Endoxin antagonist lessens myocardial ischemia reperfusion injury. Cardiovascular Drugs and Therapy, 18(4): 289-293. DOI: https://doi.org/10.1023/B:CARD.0000041248.20065.47
Kobusiak-Prokopowicz, M., Orzeszko, J., Mazur, G., Mysiak, A., Orda, A., Poreba, R. & Mazurek, W. 2007. Chemokines and left ventricular function in patients with acute myocardial infarction. European Journal of Internal Medicine, 18(4): 288–294. DOI: https://doi.org/10.1016/j.ejim.2007.02.001
Kohno, T., Anzai, T., Naito, K., Sugano, Y., Maekawa, Y., Takahashi, T., Yoshikawa, T. & Ogawa, S. 2008. Angiotensin-receptor blockade reduces border zone myocardial monocyte chemoattractant protein-1 expression and macrophage infiltration in post-infarction ventricular remodeling. Circulation Journal, 72(10): 1685-1692. DOI: https://doi.org/10.1253/circj.CJ-08-0115
Kumar, P., Shen, Q., Pivetti, C.D., Lee, E.S., Wu, M.H. & Yuan, S.Y. 2010 Molecular mechanisms of endothelial hyperpermeability: implications in Inflammation. Expert Review of Molecular Medicine, 11: e19. DOI: https://doi.org/10.1017/S1462399409001112
Lackland, D.T. & Weber, M.A. 2015. Global burden of cardiovascular disease and stroke: Hypertension at the core. Canadian Journal of Cardiology, 31(5): 569-571. DOI: https://doi.org/10.1016/j.cjca.2015.01.009
Lam, S.Y., Tipoe, G.L., Liong, E.C. & Fung, M.L. 2008. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochemistry and Cell Biology, 130(3): 549-559. DOI: https://doi.org/10.1007/s00418-008-0437-4
Laslett, L.J., Alagona, P. Jr., Clark, B.A. 3rd., Drozda, J.P. Jr., Saldivar, F., Wilson, S.R., Poe, C. & Hart, M. 2012. The worldwide environment of cardiovascular disease: Prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology. Journal of the American College of Cardiology, 60(25, Suppl.): S1-S49. DOI: https://doi.org/10.1016/j.jacc.2012.11.002
Leung, S.W.S., Zhu, D.Y. & Man, R.Y.K. 2010. Effects of the aqueous extract of Salvia Miltiorrhiza (Danshen) and its magnesium tanshinoate B-enriched form on blood pressure. Phytotherapy Research, 24(5): 769-774. DOI: https://doi.org/10.1002/ptr.3047
Li, M., Li, Q., Zhang, C., Zhang, N., Cui, Z., Huang, L. & Xiao, P. 2013. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharmaceutica Sinica B, 3(4): 273-280. DOI: https://doi.org/10.1016/j.apsb.2013.06.001
Li, Y.H., Wang, F.Y., Feng, C.Q. & Yang, X.F. 2015. Studies on the active constituents in radix Salviae miltiorrhizae and their protective effects on cerebral ischemia reperfusion injury and its mechanism. Pharmacognosy Magazine, 11(41): 69-73. DOI: https://doi.org/10.4103/0973-1296.149706
Lin, R., Wang, W.R., Liu, J.T., Yang, G.D. & Han, C.J. 2006. Protective effect of tanshinone IIA on human umbilical vein endothelial cell injured by hydrogen peroxide and its mechanism. Journal of Ethnopharmacology, 108(2): 217-222. DOI: https://doi.org/10.1016/j.jep.2006.05.004
Ling, S., Nheu, L. & Komesaroff, P.A. 2012. Cell adhesion molecules as pharmaceutical target in atherosclerosis. Mini-Reviews in Medicinal Chemistry, 12(2): 175-183. DOI: https://doi.org/10.2174/138955712798995057
Liu, Z., Xu, S., Huang, X., Wang, J., Gao, S., Li, H., Zhou, C., Ye, J., Chen, S., Jin, Z.G. & Liu, P. 2015. Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E-deficient mice: Role of lectin-like oxidized LDL receptor-1 (LOX-1). British Journal of Pharmacology, 172(23): 5661-5675. DOI: https://doi.org/10.1111/bph.13068
Lu, Y., Zheng, Y., Liu, X., Liang, X., Ngau, S., Li, T. & Zhang, W. 2012. Metabolomic profiles of myocardial ischemia under treatment with salvianolic acid B. Chinese Medicine, 7(1): 6. DOI: https://doi.org/10.1186/1749-8546-7-6
Maki, T., Kawahara, Y., Tanonaka, K., Yagi, A. & Takeo, S. 2002. Effects of tanshinone VI on the hypertrophy of cardiac myocytes and fibrosis of cardiac fibroblasts of neonatal rats. Planta Medica, 68(12): 1103-1107. DOI: https://doi.org/10.1055/s-2002-36337
Memariani, Z., Farzaei, M.H., Ali, A. and Momtaz, S. 2020. Nutritional and bioactive characterization of unexplored food rich in phytonutrients. In: Phytonutrients in Food: From Traditional to Rational Usage. S.M. Nabavi, I. Suntar, D. Barreca and H. Khan (Eds.). Woodhead Publishing, Cambridge, England. pp. 157–175. DOI: https://doi.org/10.1016/B978-0-12-815354-3.00001-0
Marasciulo, F., Montagnani, M. & Potenza, M. 2006 Endothelin-1: The yin and yang on vascular function. Current Medicinal Chemistry, 13(14): 1655-1665. DOI: https://doi.org/10.2174/092986706777441968
McClellan, M., Brown, N., Califf, R.M. & Warner, J.J. 2019. Call to action: Urgent challenges in cardiovascular disease: A presidential advisory from the American Heart Association. Circulation, 139(9): E44-E54. DOI: https://doi.org/10.1161/CIR.0000000000000652
Meng, C., Zhuo, X.Q., Xu, G.H. & Liu, J.L. 2014. Protection of salvianolate against atherosclerosis via regulating the inflammation in rats. Journal of Huazhong University of Science and Technology – Medical Science, 34(5): 646-651. DOI: https://doi.org/10.1007/s11596-014-1331-z
Mozaffari, M.S., Liu, J.Y., Abebe, W. & Baban, B. 2013. Mechanisms of load dependency of myocardial ischemia reperfusion injury. American Journal of Cardiovascular Disease, 3(4): 180-196.
Mozid, A.M., Holstensson, M., Choudhury, T., Haim, S.B., Allie, R., Martin, J., Sinusas, A.J., Hutton, B.F. & Mathur, A. 2014. Clinical feasibility study to detect angiogenesis following bone marrow stem cell transplantation in chronic ischaemic heart failure. Nuclear Medicine Communications, 35(8): 839-848. DOI: https://doi.org/10.1097/MNM.0000000000000130
Narasimhulu, C.A., Fernandez-Ruiz, I., Selvarajan, K., Jiang, X. Sengupta, B., Riad, A. & Parthasarathy, S. 2016. Atherosclerosis – Do we know enough already to prevent it? Current Opinion in Pharmacology, 27: 92-102. DOI: https://doi.org/10.1016/j.coph.2016.02.006
Newby, A.C. 2005. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiological Reviews, 85(1): 1-31. DOI: https://doi.org/10.1152/physrev.00048.2003
Nieuwlaat, R., Schwalm, J.D., Khatib, R. & Yusuf, S. 2013. Why are we failing to implement effective therapies in cardiovascular disease? European Heart Journal, 34(17): 1262-1269. DOI: https://doi.org/10.1093/eurheartj/ehs481
Pang, H., Wu, L., Tang, Y., Zhou, G., Qu, C. & Duan, J.A. 2016. Chemical analysis of the herbal medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen). Molecules, 21(1): 51. DOI: https://doi.org/10.3390/molecules21010051
Poledne, R., Lorenzová, A., Stávek, P., Valenta, Z., Hubáček, J., Suchánek, P. & Pitha, J. 2009. Proinflammatory status, genetics and atherosclerosis. Physiological Research, 58(Suppl. 2): S111-S118. DOI: https://doi.org/10.33549/10.33549/physiolres.931915
Qian, Q., Qian, S., Fan, P., Huo, D. & Wang, S. 2012a. Effect of Salvia miltiorrhiza hydrophilic extract on antioxidant enzymes in diabetic patients with chronic heart disease: A randomized controlled trial. Phytotherapy Research, 26 (1): 60–66. DOI: https://doi.org/10.1002/ptr.3513
Qian, S., Wang, S., Fan, P., Huo, D., Dai, L. & Qian, Q. 2012b. Effect of Salvia miltiorrhiza hydrophilic extract on the endothelial biomarkers in diabetic patients with chronic artery disease. Phytotherapy Research, 26 (10): 1575-1578. DOI: https://doi.org/10.1002/ptr.4611
Ren, J., Fu, L., Nile, S.H., Zhang, J. & Kai, G. 2019. Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications. Frontiers in Pharmacology, 10: 753. DOI: https://doi.org/10.3389/fphar.2019.00753
Ren, Z.H., Tong, Y.H., Xu, W., Ma, J. & Chen, Y. 2010. Tanshinone II A attenuates inflammatory responses of rats with myocardial infarction by reducing MCP-1 expression. Phytomedicine, 17(3-4): 212-218. DOI: https://doi.org/10.1016/j.phymed.2009.08.010
Roffe, S., Hagai, Y., Pines, M. & Halevy, O. 2010. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion. Experimental Cell Research, 316(6): 1061-1069. DOI: https://doi.org/10.1016/j.yexcr.2010.01.003
Rossello, X., Pocock, S.J. & Julian, D.G. 2015. Long-term use of cardiovascular drugs challenges for research and for patient care. Journal of the American College of Cardiology, 66 (11): 1273-1285. DOI: https://doi.org/10.1016/j.jacc.2015.07.018
Rosiek, A. & Leksowski, K. 2016. The risk factors and prevention of cardiovascular disease: The importance of electrocardiogram in the diagnosis and treatment of acute coronary syndrome. Therapeutics and Clinical Risk Management, 12: 1223-1229. DOI: https://doi.org/10.2147/TCRM.S107849
Sazlina, S.G. Sooryanarayana, R., Ho, B.K., Omar, M.A., Krishnapillai, A.D., Tohit, N.M., Abidin, S.I.Z., Ariaratnam, S. & Ahmad, N.A. 2020. Cardiovascular disease risk factors among older people: Data from the National Health and Morbidity Survey 2015. PLOS ONE, 15(10): e0240826. DOI: https://doi.org/10.1371/journal.pone.0240826
Shaito, A., Thuan, D.T.B., Phu, H.T., Nguyen, T.H.D., Hasan, H., Halabi, S., Abdelhady, S., Nasrallah, G.K., Eid, A.H. & Pintus, G. 2020. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Frontiers in Pharmacology, 11: 422. DOI: https://doi.org/10.3389/fphar.2020.00422
Song, M., Huang, L., Zhao, G. & Song, Y. 2013. Beneficial effects of a polysaccharide from Salvia miltiorrhiza on myocardial ischemia-reperfusion injury in rats. Carbohydrate Polymers, 98(2):1631-1636. DOI: https://doi.org/10.1016/j.carbpol.2013.08.020
Su, C.Y., Ming, Q.L., Rahman, K., Han, T., Qin, L.P. 2015. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chinese Journal of Natural Medicines, 13(3): 163-182. DOI: https://doi.org/10.1016/S1875-5364(15)30002-9
Sun, D. Wei, Gao, Q. & Qi, X. 2020. Danshensu ameliorates cardiac ischaemia reperfusion injury through activating Sirt1/FoxO1/Rab7 signal pathway. Chinese Journal of Integrative Medicine, 26(4): 283-291. DOI: https://doi.org/10.1007/s11655-019-3165-9
Sun, L. & Zheng, Z. 2007. Effect of Salvia miltiorrhiza Bge on left ventricular hypertrophy and the expression of tumor necrosis factor-α in spontaneously hypertensive rats. Journal of Huazhong University of Science and Technology – Medical Science, 27(3): 245-247. DOI: https://doi.org/10.1007/s11596-007-0307-7
Takahashi, M., Suzuki, E., Takeda, R., Oba, S., Nishimatsu, H., Kimura, K., Nagano, T., Nagai, R. & Hirata, Y. 2008. Angiotensin II and tumor necrosis factor-α synergistically promote monocyte chemoattractant protein-1 expression: Roles of NF-κB, p38, and reactive oxygen species. American Journal of Physiology – Heart and Circulatory Physiology, 294(6): H2879-H2888. DOI: https://doi.org/10.1152/ajpheart.91406.2007
Tang, Y., Wang, M., Le, X., Meng, J., Huang, L., Yu, P., Chen, J. & Wu, P. 2011a. Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats. Phytomedicine, 18(12): 1024-1030. DOI: https://doi.org/10.1016/j.phymed.2011.05.007
Tang, Y., Wang, M., Chen, C., Le, X., Sun, S. & Yin, Y. 2011b. Cardiovascular protection with Danshensu in spontaneously hypertensive rats. Biological and Pharmaceutical Bulletin, 34(10): 1596–1601. DOI: https://doi.org/10.1248/bpb.34.1596
Tian, T. & Xu, L.M. 2009. Effects of Salviae miltiorrhizae and salvianolic acid B on microcirculation of liver in mice with portal hypertension. Journal of Chinese Integrative Medicine, 7(2): 151-156. DOI: https://doi.org/10.3736/jcim20090211
Toth, P., Csiszar, A., Tucsek, Z., Sosnowska, D., Gautam, T., Koller, A., Schwartzman, M.L., Sonntag, W.E. & Ungvari, Z. 2013. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. American Journal of Physiology – Heart and Circulatory Physiology, 305(12): H1698-H1708. DOI: https://doi.org/10.1152/ajpheart.00377.2013
Voulgari, C., Papadogiannis, D. & Tentolouris, N. 2010. Diabetic cardiomyopathy: From the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vascular Health and Risk Management, 6: 883-903. DOI: https://doi.org/10.2147/VHRM.S11681
Wachtel-Galor, S. and Benzie, I.F.F. 2011. Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs. In: Herbal Medicine: Biomolecular and Clinical Aspects. 2nd Ed. S. Wachtel-Galor and I.F.F. Benzie (Eds.). CRC Press/Taylor & Francis, Boca Raton, Florida. pp. 1–10. DOI: https://doi.org/10.1201/b10787-2
Wang, B.Q. 2010. Salvia miltiorrhiza: Chemical and pharmacological review of a medicinal plant. Journal of Medicinal Plants Research, 4(25): 2813-2820.
Wang, J., Weigand, L., Wang, W., Sylvester, J.T. & Shimoda, L.A. 2005. Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. American Journal of Physiology – Lung Cellular and Molecular Physiology, 288(6): L1049-L1058. DOI: https://doi.org/10.1152/ajplung.00379.2004
Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., Chen, Y., Wang, E., Lai, N., Zhao, L., Jiang, H., Sun, Y., Zhong, N., Ran, P. & Lu, W. 2013. Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. American Journal of Respiratory Cell and Molecular Biology, 48(1): 125-134. DOI: https://doi.org/10.1165/rcmb.2012-0071OC
Wang, J., Fu, X., Yang, K., Jiang, Q., Chen, Y., Jia, J., Duan, X., Wang, E.W., He, J., Ran, P., Zhong, N., Semenza, G.L. & Lu, W. 2015. Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovascular Research, 107(1): 108-118. DOI: https://doi.org/10.1093/cvr/cvv122
Wang, L., Ma, R., Liu, C., Liu, H., Zhu, R., Guo, S., Tang, M., Li, Y., Niu, J., Fu, M., Gao, S. & Zhang, D. 2016. Salvia miltiorrhiza: A potential red light to the development of cardiovascular diseases. Current Pharmaceutical Design, 23(7): 1077–1097. DOI: https://doi.org/10.2174/1381612822666161010105242
Wang, X.F. and Zhao, M.Q. 2003. Ligustrazine and Salvia miltiorrhiza injection solution in complementary therapy of pregnancy-induced hypertension: clinical analysis of 60 cases. Di Yi Jun Yi Da Xue Xue Bao, 23 (9): 969-971.
Wu, Y.J., Hong, C.Y., Lin, S.J., Wu, P. & Shiao, M.S. 1998. Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(3): 481-486. DOI: https://doi.org/10.1161/01.ATV.18.3.481
Xia, Y. & Frangogiannis, N.G. 2007. MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy. Inflammation and Allergy – Drug Targets, 6(2): 101–107. DOI: https://doi.org/10.2174/187152807780832265
Yang, T.Y., Wei, J.C.C., Lee, M.Y., Chen, C.M.B. & Ueng, K.C. 2012. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and tolerability of Fufang Danshen (Salvia miltiorrhiza) as add-on antihypertensive therapy in Taiwanese patients with uncontrolled hypertension. Phytotherapy Research, 26(2): 291-298. DOI: https://doi.org/10.1002/ptr.3548
Zhao, G.R., Zhang, H.M., Ye, T.X., Xiang, Z.J., Yuan, Y.J., Guo, Z.X. & Zhao, L.B. 2008. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food and Chemical Toxicology, 46(1): 73-81. DOI: https://doi.org/10.1016/j.fct.2007.06.034
Zhao, Y., Vanhoutte, P.M. & Leung, S.W.S. 2015. Vascular nitric oxide: Beyond eNOS. Journal of Pharmacological Sciences, 129(2): 83-94. DOI: https://doi.org/10.1016/j.jphs.2015.09.002
Zhao, W., Wu, C. & Chen, X. 2016. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways. Cell Adhesion and Migration, 10(3): 248-258. DOI: https://doi.org/10.1080/19336918.2015.1119361
Zheng, L., Liu, M., Wei, M., Liu, Y., Dong, M., Luo, Y., Zhao, P., Dong, H., Niu, W., Yan, Z. & Li, Z. 2015. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents. Respiratory Physiology & Neurobiology, 205: 120-128. DOI: https://doi.org/10.1016/j.resp.2014.09.025
Zhou, R., He, L.F., Li, Y.F., Shen, Y., Chao, R.B. & Du, J.R. 2012. Cardioprotective effect of water and ethanol extract of Salvia miltiorrhiza in an experimental model of myocardial infarction. Journal of Ethnopharmacology, 139(2): 440-446. DOI: https://doi.org/10.1016/j.jep.2011.11.030
Zhou, J., Du, T., Li, B., Rong, Y., Verkhratsky, A. & Peng, L. 2015. Crosstalk between MAPK/ERK and PI3K/AKT signal pathways during brain ischemia/reperfusion. ASN Neuro, 7(5). DOI: https://doi.org/10.1177/1759091415602463
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission