Evaluation of Small Extracellular Vesicles Isolation Methods from Human Serum for Downstream miRNA Profiling
Keywords:
Commercial kits, exosome, isolation, polyethylene glycol, purification, ultracentrifugationAbstract
Exosomes are a type of extracellular vesicles that carry distinct profiles of biomolecules such as lipids, proteins, DNAs, and RNAs. Despite many years of research, there is still a lack in standardized method to isolate exosomes from clinical samples for their downstream applications. Thus, this study compared three different methods, which are the differential ultracentrifugation (DUC), polyethylene glycol-based precipitation (PEG), and a combination of both (PEG+UC) to isolate exosomes from human serum. The isolated exosomes were evaluated by their size distribution, recovered particle concentration, particle to protein ratio, exosomal marker expression, and miRNA recovery. Our results indicated that all three methods successfully isolated exosomes, however, with varying yield and purity. In particular, PEG+UC produced exosomes of both high yield and high purity, DUC produced exosomes of both low yield and low purity, whereas PEG produced exosomes of high yield but low purity. Using miR-30d-5p and let-7i-5p as selected targets, our qPCR results indicated significant differences in terms of exosomal miRNA recovery between all three methods. Overall, the PEG+UC method appeared to be a less labour-intensive alternative that can isolate exosomes of both high yield and high purity from human serum without compromising the yield of miRNAs.
Downloads
Metrics
References
Abramowicz, A., Marczak, L., Wojakowska, A., Zapotoczny, S., Whiteside, T.L., Widlak, P. & Pietrowska, M. 2018. Harmonization of exosome isolation from culture supernatants for optimized proteomics analysis. PLoS One. 13(10): e0205496.
Alotaibi, F. 2023. Exosomal microRNAs in cancer: Potential biomarkers and immunotherapeutic targets for immune checkpoint molecules. Frontiers in Genetics, 14: 1052731.
Alvarez, M.L., Khosroheidari, M., Kanchi Ravi, R. & Distefano, JK. 2012. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 82(9): 1024–1032.
Andreu, Z, Rivas, E, Sanguino-Pascual, A, Lamana, A, Marazuela, M, González-Alvaro, I, Sánchez-Madrid, F, de la Fuente, H. & Yáñez-Mó M. 2016. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. Journal of Extracellular Vesicles, 5(1): 31655.
Bellin, G., Gardin, C., Ferroni, L., Chachques, J.C., Rogante, M., Mitrečić, D., Ferrari, R. & Zavan, B. 2019. Exosome in cardiovascular diseases: A complex world full of hope. Cells, 8(2): 166.
Boukouris, S. & Mathivanan, S. 2015. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clinical Applications, 9(3–4): 358–367.
Cheng, L., Sharples, R.A., Scicluna, B.J. & Hill, A.F. 2014. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles 3(1): 23743.
Couch, Y., Buzàs, E.I., Vizio, D.D., Gho, Y.S., Harrison, P., Hill, A.F., Lötvall, J., Raposo, G., Stahl, P.D., Théry, C., Witwer, K.W. & Carter, D.R.F. 2021. A brief history of nearly EV-erything – The rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 10(14): e12144.
Crowley-Nowick, P.A., Campbell, E., Schrohenloher, R.E., Mestecky, J., Mestecky, J. & Jackson, S. 1996. Polyethylene glycol precipitates of serum contain a large proportion of uncomplexed immunoglobulins and C3. Immunological Investigation, 25(1–2): 91–101.
Doyle, L. & Wang, M. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7): 727.
Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., Abner, E.L., Petersen, R.C., Federoff, H.J., Miller, B.L. & Goetzl, E.J. 2015. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimer’s and Dementia, 11(6): 600–607.
Frydrychowicz, M., Kolecka-Bednarczyk, A., Madejczyk, M., Yasar, S. & Dworacki, G. 2015. Exosomes-structure, biogenesis and biological role in non-small-cell lung cancer. Scandinavian Journal of Immunology, 81(1): 2–10.
Gámez-Valero, A., Monguió-Tortajada, M., Carreras-Planella, L., Franquesa, M., Beyer, K., Borràs, .FE. 2016. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Scientific Reports, 6: 33641.
Gardiner, C,, Vizio, D.D., Sahoo, S., Théry, C., Witwer, K.W., Wauben, M. & Hill, A.F. 2016. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. Journal of Extracellular Vesicles, 5(1): 32945.
Guerreiro, E.M., Vestad, B., Steffensen, L.A., Aass, H.C.D., Saeed, M., Øvstebø, R., Costea, D.E., Galtung, H.K., Søland, T.M. 2018. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One, 13(9): e0204276.
Helwa, I., Cai, J., Drewry, M.D., Zimmerman, A., Dinkins, M.B., Khaled, M.L., Seremwe, M., Dismuke, W.M., Bieberich, E., Stamer, W.D., Hamrick, M.W. & Liu, Y. 2017. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 12(1): e0170628.
Iftikhar, H. & Carney, G.E. 2016. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing: Potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange. BioEssays, 38(4): 367–378.
Khanabdali, R., Mandrekar, M., Grygiel, R., Vo, P.A., Palma, C., Nikseresht, S., Barton, S., Shojaee, M., Bhuiyan, S., Asari, K., Belzer, S., Ansari, K., Coward, J.I., Perrin, L., Hooper, J., Guanzon, D., Lai, A., Salomon, C., Kershner, K., Newton, C., Horejsh, D. & Rice, G. 2024. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biology Methods and Protocols, 9(1): bpae032.
Li, K., Wong, D.K., Hong, K.Y. & Raffai, R.L. 2018. Cushioned–Density gradient ultracentrifugation (C-DGUC): A refined and high performance method for the, isolation, characterization, and use of exosomes. In Methods in Molecular Biology, 1740: 69–83.
Li, X., Corbett, A.L., Taatizadeh, E., Tasnim, N., Little, J.P., Garnis, C., Daugaard, M., Guns, E., Hoorfar, M. & Li, I.T.S. 2019. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioengineering, 3(1): 011503.
Linares, R., Tan, S., Gounou, C., Arraud, N. & Brisson, A.R. 2015. High-speed centrifugation induces aggregation of extracellular vesicles. Journal of Extracellular Vesicles, 4(1): 29509.
Livshts, M.A., Khomyakova, E., Evtushenko, E.G., Lazarev, V.N., Kulemin, N.A., Semina, S.E., Generozov, E.V. & Govorun, V.M. 2015. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Scientific Reports, 5: 17319.
Ludwig, A., De Miroschedji, K., Doeppner, T. R., Börger, V., Ruesing, J., Rebmann, V., Durst, S., Jansen, S., Bremer, M., Behrmann, E., Singer, B. B., Jastrow, H., Kuhlmann, J. D., El Magraoui, F., Meyer, H. E., Hermann, D. M., Opalka, B., Raunser, S., Epple, M., Horn, P.A. & Giebel, B. 2018. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of Extracellular Vesicles, 7(1): 1528109.
Ludwig, N., Whiteside, T.L. & Reichert, T.E. 2019. Challenges in exosome isolation and analysis in health and disease. International Journal of Molecular Sciences, 20(19): 4684.
Ma, X., Liao, X., Liu, J., Wang, Y., Wang, X., Chen, Y., Yin, X. & Pan, Q. 2022. Circulating endothelial microvesicles and their carried miR-125a-5p: Potential biomarkers for ischaemic stroke. Stroke and Vascular Neurology, 8(2): 89–102.
Makler, A. & Asghar, W. 2020. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Review of Molecular Diagnostics, 20(4): 387–400.
Martellucci, S., Orefice, N.S., Angelucci, A., Luce, A., Caraglia, M. & Zappavigna, S. 2020. Extracellular vesicles: New endogenous shuttles for miRNAs in cancer diagnosis and therapy? International Journal of Molecular Sciences, 21(18): 6486.
Martins, T.S., Vaz, M. & Henriques, A.G. 2023. A review on comparative studies addressing exosome isolation methods from body fluids. Analytical and Bioanalytical Chemistry, 415(7): 1239–1263.
Nigro, A., Finardi, A., Ferraro, M.M., Manno, D.E., Quattrini, A., Furlan, R. & Romano, A. 2021. Selective loss of microvesicles is a major issue of the differential centrifugation isolation protocols. Scientific Reports, 11(1): 3589.
Pan, Q., Ma, C., Wang, Y., Wang, J., Zheng, J., Du, D., Liao, X., Chen, Y., Chen, Y., Bihl, J., Chen, C., Yang, Y. & Ma, X. 2019. Microvesicles-mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR-125a-5p. Journal of Cellular Biochemistry, 120(3): 3160–3172.
Patel, G.K., Khan, M.A., Zubair, H., Srivastava, S.K., Khushman, M., Singh, S. & Singh, A.P. 2019. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 9(1): 5335.
Rider, M.A., Hurwitz, S.N. & Meckes, D.G. 2016. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific Reports, 6: 23978.
Sódar, B.W., Kittel, Á., Pálóczi, K., Vukman, K.V., Osteikoetxea, X., Szabó-Taylor, K., Németh, A., Sperlágh, B., Baranyai, T., Giricz, Z., Wiener, Z., Turiák, L., Drahos, L., Pállinger, É., Vékey, K., Ferdinandy, P., Falus, A., & Buzás, E.I. 2016. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Scientific Reports, 6: 24316.
Ståhl, A.L., Johansson, K., Mossberg, M., Kahn, R., Karpman, D. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric Nephrology, 34(1): 11–30.
Tan, P.P.S., Hall, D., Chilian, W.M., Chia, Y.C., Zain, S.M., Lim, H.M., Kumar, D.N., Ching, S.M., Low, T.Y., Noh, M.F.M. & Pung, Y.F. 2021. Exosomal microRNAs in the development of essential hypertension and its potential as biomarkers. American Journal of Physiology Heart and Circulatory Physiology, 320(4): 1486–1497.
Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1): 1535750.
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J. & Lötvall, J.O. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6): 654–659.
Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D. & Remaley, A.T. 2011. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4): 423–435.
Yakubovich, E.I., Polischouk, A.G., Evtushenko, V.I. 2022. Principles and Problems of Exosome Isolation from Biological Fluids. Biochemistry (Moscow) Supplement Series A Membrane and Cell Biology, 16(2): 115–126.
Yang, D., Zhang, W., Zhang, H., Zhang, F., Chen, L., Ma, L., Larcher, L.M., Chen, S., Liu, N., Zhao, Q., Tran, P. H., Chen, C., Veedu, R. N. & Wang, T. 2020. Progress, opportunity, and perspective on exosome isolation - Efforts for efficient exosome-based theranostics. Theranostics, 10(8):3684–3707.
Yedigaryan, L. & Sampaolesi, M. 2023. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Frontiers in Physiology, 14: 1130063.
Zhang, H., Chen, G., Qiu, W., Pan, Q., Chen, Y., Chen, Y. & Ma, X. 2020. Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke. Journal of Neuroscience Research, 98(11): 2290–2301.
Zhang, Y., Liu, Y., Liu, H. & Tang, W.H. 2019. Exosomes: Biogenesis, biologic function and clinical potential. Cell Bioscience, 9(1): 19.
Zhou, W., Woodson, M., Neupane, B., Bai, F., Sherman, M.B., Choi, K.H., Neelakanta, G. & Sultana, H. 2018. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathogens, 14(1): e1006764.
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Kementerian Sains, Teknologi dan Inovasi
Grant numbers RD0120Q1410