Evaluation of Small Extracellular Vesicles Isolation Methods from Human Serum for Downstream miRNA Profiling
Keywords:
Commercial kits, exosome, isolation, polyethylene glycol, purification, ultracentrifugationAbstract
Exosomes are a type of extracellular vesicles that carry distinct profiles of biomolecules such as lipids, proteins, DNAs, and RNAs. Despite many years of research, there is still a lack in standardized method to isolate exosomes from clinical samples for their downstream applications. Thus, this study compared three different methods, which are the differential ultracentrifugation (DUC), polyethylene glycol-based precipitation (PEG), and a combination of both (PEG+UC) to isolate exosomes from human serum. The isolated exosomes were evaluated by their size distribution, recovered particle concentration, particle to protein ratio, exosomal marker expression, and miRNA recovery. Our results indicated that all three methods successfully isolated exosomes, however, with varying yield and purity. In particular, PEG+UC produced exosomes of both high yield and high purity, DUC produced exosomes of both low yield and low purity, whereas PEG produced exosomes of high yield but low purity. Using miR-30d-5p and let-7i-5p as selected targets, our qPCR results indicated significant differences in terms of exosomal miRNA recovery between all three methods. Overall, the PEG+UC method appeared to be a less labour-intensive alternative that can isolate exosomes of both high yield and high purity from human serum without compromising the yield of miRNAs.
Downloads
Metrics
References
Abramowicz, A., Marczak, L., Wojakowska, A., Zapotoczny, S., Whiteside, T.L., Widlak, P. & Pietrowska, M. 2018. Harmonization of exosome isolation from culture supernatants for optimized proteomics analysis. PLoS One. 13(10): e0205496. DOI: https://doi.org/10.1371/journal.pone.0205496
Alotaibi, F. 2023. Exosomal microRNAs in cancer: Potential biomarkers and immunotherapeutic targets for immune checkpoint molecules. Frontiers in Genetics, 14: 1052731. DOI: https://doi.org/10.3389/fgene.2023.1052731
Alvarez, M.L., Khosroheidari, M., Kanchi Ravi, R. & Distefano, JK. 2012. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 82(9): 1024–1032. DOI: https://doi.org/10.1038/ki.2012.256
Andreu, Z, Rivas, E, Sanguino-Pascual, A, Lamana, A, Marazuela, M, González-Alvaro, I, Sánchez-Madrid, F, de la Fuente, H. & Yáñez-Mó M. 2016. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. Journal of Extracellular Vesicles, 5(1): 31655. DOI: https://doi.org/10.3402/jev.v5.31655
Bellin, G., Gardin, C., Ferroni, L., Chachques, J.C., Rogante, M., Mitrečić, D., Ferrari, R. & Zavan, B. 2019. Exosome in cardiovascular diseases: A complex world full of hope. Cells, 8(2): 166. DOI: https://doi.org/10.3390/cells8020166
Boukouris, S. & Mathivanan, S. 2015. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clinical Applications, 9(3–4): 358–367. DOI: https://doi.org/10.1002/prca.201400114
Cheng, L., Sharples, R.A., Scicluna, B.J. & Hill, A.F. 2014. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles 3(1): 23743. DOI: https://doi.org/10.3402/jev.v3.23743
Couch, Y., Buzàs, E.I., Vizio, D.D., Gho, Y.S., Harrison, P., Hill, A.F., Lötvall, J., Raposo, G., Stahl, P.D., Théry, C., Witwer, K.W. & Carter, D.R.F. 2021. A brief history of nearly EV-erything – The rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 10(14): e12144. DOI: https://doi.org/10.1002/jev2.12144
Crowley-Nowick, P.A., Campbell, E., Schrohenloher, R.E., Mestecky, J., Mestecky, J. & Jackson, S. 1996. Polyethylene glycol precipitates of serum contain a large proportion of uncomplexed immunoglobulins and C3. Immunological Investigation, 25(1–2): 91–101. DOI: https://doi.org/10.3109/08820139609059293
Doyle, L. & Wang, M. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 8(7): 727. DOI: https://doi.org/10.3390/cells8070727
Fiandaca, M.S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J.B., Abner, E.L., Petersen, R.C., Federoff, H.J., Miller, B.L. & Goetzl, E.J. 2015. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimer’s and Dementia, 11(6): 600–607. DOI: https://doi.org/10.1016/j.jalz.2014.06.008
Frydrychowicz, M., Kolecka-Bednarczyk, A., Madejczyk, M., Yasar, S. & Dworacki, G. 2015. Exosomes-structure, biogenesis and biological role in non-small-cell lung cancer. Scandinavian Journal of Immunology, 81(1): 2–10. DOI: https://doi.org/10.1111/sji.12247
Gámez-Valero, A., Monguió-Tortajada, M., Carreras-Planella, L., Franquesa, M., Beyer, K., Borràs, .FE. 2016. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Scientific Reports, 6: 33641. DOI: https://doi.org/10.1038/srep33641
Gardiner, C,, Vizio, D.D., Sahoo, S., Théry, C., Witwer, K.W., Wauben, M. & Hill, A.F. 2016. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. Journal of Extracellular Vesicles, 5(1): 32945. DOI: https://doi.org/10.3402/jev.v5.32945
Guerreiro, E.M., Vestad, B., Steffensen, L.A., Aass, H.C.D., Saeed, M., Øvstebø, R., Costea, D.E., Galtung, H.K., Søland, T.M. 2018. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One, 13(9): e0204276. DOI: https://doi.org/10.1371/journal.pone.0204276
Helwa, I., Cai, J., Drewry, M.D., Zimmerman, A., Dinkins, M.B., Khaled, M.L., Seremwe, M., Dismuke, W.M., Bieberich, E., Stamer, W.D., Hamrick, M.W. & Liu, Y. 2017. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 12(1): e0170628. DOI: https://doi.org/10.1371/journal.pone.0170628
Iftikhar, H. & Carney, G.E. 2016. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing: Potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange. BioEssays, 38(4): 367–378. DOI: https://doi.org/10.1002/bies.201500130
Khanabdali, R., Mandrekar, M., Grygiel, R., Vo, P.A., Palma, C., Nikseresht, S., Barton, S., Shojaee, M., Bhuiyan, S., Asari, K., Belzer, S., Ansari, K., Coward, J.I., Perrin, L., Hooper, J., Guanzon, D., Lai, A., Salomon, C., Kershner, K., Newton, C., Horejsh, D. & Rice, G. 2024. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biology Methods and Protocols, 9(1): bpae032. DOI: https://doi.org/10.1093/biomethods/bpae032
Li, K., Wong, D.K., Hong, K.Y. & Raffai, R.L. 2018. Cushioned–Density gradient ultracentrifugation (C-DGUC): A refined and high performance method for the, isolation, characterization, and use of exosomes. In Methods in Molecular Biology, 1740: 69–83. DOI: https://doi.org/10.1007/978-1-4939-7652-2_7
Li, X., Corbett, A.L., Taatizadeh, E., Tasnim, N., Little, J.P., Garnis, C., Daugaard, M., Guns, E., Hoorfar, M. & Li, I.T.S. 2019. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioengineering, 3(1): 011503. DOI: https://doi.org/10.1063/1.5087122
Linares, R., Tan, S., Gounou, C., Arraud, N. & Brisson, A.R. 2015. High-speed centrifugation induces aggregation of extracellular vesicles. Journal of Extracellular Vesicles, 4(1): 29509. DOI: https://doi.org/10.3402/jev.v4.29509
Livshts, M.A., Khomyakova, E., Evtushenko, E.G., Lazarev, V.N., Kulemin, N.A., Semina, S.E., Generozov, E.V. & Govorun, V.M. 2015. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Scientific Reports, 5: 17319. DOI: https://doi.org/10.1038/srep17319
Ludwig, A., De Miroschedji, K., Doeppner, T. R., Börger, V., Ruesing, J., Rebmann, V., Durst, S., Jansen, S., Bremer, M., Behrmann, E., Singer, B. B., Jastrow, H., Kuhlmann, J. D., El Magraoui, F., Meyer, H. E., Hermann, D. M., Opalka, B., Raunser, S., Epple, M., Horn, P.A. & Giebel, B. 2018. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of Extracellular Vesicles, 7(1): 1528109. DOI: https://doi.org/10.1080/20013078.2018.1528109
Ludwig, N., Whiteside, T.L. & Reichert, T.E. 2019. Challenges in exosome isolation and analysis in health and disease. International Journal of Molecular Sciences, 20(19): 4684. DOI: https://doi.org/10.3390/ijms20194684
Ma, X., Liao, X., Liu, J., Wang, Y., Wang, X., Chen, Y., Yin, X. & Pan, Q. 2022. Circulating endothelial microvesicles and their carried miR-125a-5p: Potential biomarkers for ischaemic stroke. Stroke and Vascular Neurology, 8(2): 89–102. DOI: https://doi.org/10.1136/svn-2021-001476
Makler, A. & Asghar, W. 2020. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Review of Molecular Diagnostics, 20(4): 387–400. DOI: https://doi.org/10.1080/14737159.2020.1731308
Martellucci, S., Orefice, N.S., Angelucci, A., Luce, A., Caraglia, M. & Zappavigna, S. 2020. Extracellular vesicles: New endogenous shuttles for miRNAs in cancer diagnosis and therapy? International Journal of Molecular Sciences, 21(18): 6486. DOI: https://doi.org/10.3390/ijms21186486
Martins, T.S., Vaz, M. & Henriques, A.G. 2023. A review on comparative studies addressing exosome isolation methods from body fluids. Analytical and Bioanalytical Chemistry, 415(7): 1239–1263. DOI: https://doi.org/10.1007/s00216-022-04174-5
Nigro, A., Finardi, A., Ferraro, M.M., Manno, D.E., Quattrini, A., Furlan, R. & Romano, A. 2021. Selective loss of microvesicles is a major issue of the differential centrifugation isolation protocols. Scientific Reports, 11(1): 3589. DOI: https://doi.org/10.1038/s41598-021-83241-w
Pan, Q., Ma, C., Wang, Y., Wang, J., Zheng, J., Du, D., Liao, X., Chen, Y., Chen, Y., Bihl, J., Chen, C., Yang, Y. & Ma, X. 2019. Microvesicles-mediated communication between endothelial cells modulates, endothelial survival, and angiogenic function via transferring of miR-125a-5p. Journal of Cellular Biochemistry, 120(3): 3160–3172. DOI: https://doi.org/10.1002/jcb.27581
Patel, G.K., Khan, M.A., Zubair, H., Srivastava, S.K., Khushman, M., Singh, S. & Singh, A.P. 2019. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 9(1): 5335. DOI: https://doi.org/10.1038/s41598-019-41800-2
Rider, M.A., Hurwitz, S.N. & Meckes, D.G. 2016. ExtraPEG: A polyethylene glycol-based method for enrichment of extracellular vesicles. Scientific Reports, 6: 23978. DOI: https://doi.org/10.1038/srep23978
Sódar, B.W., Kittel, Á., Pálóczi, K., Vukman, K.V., Osteikoetxea, X., Szabó-Taylor, K., Németh, A., Sperlágh, B., Baranyai, T., Giricz, Z., Wiener, Z., Turiák, L., Drahos, L., Pállinger, É., Vékey, K., Ferdinandy, P., Falus, A., & Buzás, E.I. 2016. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Scientific Reports, 6: 24316. DOI: https://doi.org/10.1038/srep24316
Ståhl, A.L., Johansson, K., Mossberg, M., Kahn, R., Karpman, D. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric Nephrology, 34(1): 11–30. DOI: https://doi.org/10.1007/s00467-017-3816-z
Tan, P.P.S., Hall, D., Chilian, W.M., Chia, Y.C., Zain, S.M., Lim, H.M., Kumar, D.N., Ching, S.M., Low, T.Y., Noh, M.F.M. & Pung, Y.F. 2021. Exosomal microRNAs in the development of essential hypertension and its potential as biomarkers. American Journal of Physiology Heart and Circulatory Physiology, 320(4): 1486–1497. DOI: https://doi.org/10.1152/ajpheart.00888.2020
Théry, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1): 1535750. DOI: https://doi.org/10.1080/20013078.2018.1461450
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J. & Lötvall, J.O. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6): 654–659. DOI: https://doi.org/10.1038/ncb1596
Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D. & Remaley, A.T. 2011. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4): 423–435. DOI: https://doi.org/10.1038/ncb2210
Yakubovich, E.I., Polischouk, A.G., Evtushenko, V.I. 2022. Principles and Problems of Exosome Isolation from Biological Fluids. Biochemistry (Moscow) Supplement Series A Membrane and Cell Biology, 16(2): 115–126. DOI: https://doi.org/10.1134/S1990747822030096
Yang, D., Zhang, W., Zhang, H., Zhang, F., Chen, L., Ma, L., Larcher, L.M., Chen, S., Liu, N., Zhao, Q., Tran, P. H., Chen, C., Veedu, R. N. & Wang, T. 2020. Progress, opportunity, and perspective on exosome isolation - Efforts for efficient exosome-based theranostics. Theranostics, 10(8):3684–3707. DOI: https://doi.org/10.7150/thno.41580
Yedigaryan, L. & Sampaolesi, M. 2023. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Frontiers in Physiology, 14: 1130063. DOI: https://doi.org/10.3389/fphys.2023.1130063
Zhang, H., Chen, G., Qiu, W., Pan, Q., Chen, Y., Chen, Y. & Ma, X. 2020. Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke. Journal of Neuroscience Research, 98(11): 2290–2301. DOI: https://doi.org/10.1002/jnr.24696
Zhang, Y., Liu, Y., Liu, H. & Tang, W.H. 2019. Exosomes: Biogenesis, biologic function and clinical potential. Cell Bioscience, 9(1): 19. DOI: https://doi.org/10.1186/s13578-019-0282-2
Zhou, W., Woodson, M., Neupane, B., Bai, F., Sherman, M.B., Choi, K.H., Neelakanta, G. & Sultana, H. 2018. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathogens, 14(1): e1006764. DOI: https://doi.org/10.1371/journal.ppat.1006764
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Kementerian Sains, Teknologi dan Inovasi
Grant numbers RD0120Q1410