Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut

https://doi.org/10.55230/mabjournal.v53i3.2999

Authors

  • Muhammad Syafiq Suhaimi Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Fayyadhah Asyiqin Zailani Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nur Farah Syuhada Mohd Zaki Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Farizan Aris Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Taufiq Mat Jalil Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nurul Aili Zakaria Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Human Genetics and Biochemistry Research Group (Hugeb), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia https://orcid.org/0000-0002-0364-3891

Keywords:

tannin-degrading bacteria, Acinetobacter strain, identification, tannase, tannic acid

Abstract

Tannins are toxic polyphenols present in various plants, contributing to microbial attacks and plant protection due to their astringence and bitter taste. However, high tannin inclusion in poultry diets will result in dyspepsia, hampering nutrient absorption and digestion. Interestingly, several bacteria occupying the rumen and gastrointestinal tract (GIT) of animals may tolerate tannins and degrade them by wielding tannase enzymes. The study aims to isolate and characterize potential tannin-degrading bacteria (TDB) from several ruminant specimens. The TDBs were isolated based on their tannin hydrolyzing ability on a minimal salt medium (MSM) agar complemented with 0.2% tannic acid as the sole source of carbon and energy. The maximum tannin tolerance of the isolates was characterized using increased tannin concentrations on the MSM agar plates. Furthermore, the tannase activity was also evaluated over a five-day incubation. A total of 42 tannin degraders were isolated, and 10 TDBs were chosen for further characterization based on the hydrolyzed zone produced. Molecular identification revealed the presence of Bacillus cereus (TDB536), Lysinibacillus macroides (TDB17), Acinetobacter nosocomialis (TDB18, 20, 23, 24, 30, 35), and Staphylococcus saprophyticus (TDB40). TDB17, TDB18, and TDB24 showed the highest tannic acid tolerance at 1.0%, while TDB36 and TDB40 exhibited the lowest tolerance at 0.4%. Each TDB displayed varying tannase activities, ranging from 11.56 to 42.08 U/mL over a five-day incubation period. TDB5 and TDB35 demonstrated significantly higher tannase activity on day 2 (p<0.05). Meanwhile, TDB23 and TDB24 showed the highest tannase on day 4 (p<0.05). Among the isolates, A. nosocomialis strain AE6 (TDB24) from feces exhibited the highest tannase activity (42.08 U/mL) and represented the best TDB. The isolated strains demonstrate their capabilities in reducing tannin's antinutritional effects in poultry feed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdulshaheed, A. A., Hanafiah, M. M., & Muslim, S.N. 2023. Screening and optimization of a novel gallic acid and tannase production under semi quantitative and quantitative methods. IOP Conference Series: Earth and Environmental Science, 1167(1): 012046. DOI: https://doi.org/10.1088/1755-1315/1167/1/012046

Aharwar, A. & Parihar, D.K. 2018. Tannases: Production, properties, applications. Biocatalysis and Agricultural Biotechnology, 15: 322-334. DOI: https://doi.org/10.1016/j.bcab.2018.07.005

Ahuatzin-Flores, O.E., Torres, E. & Chávez-Bravo, E. 2024. Acinetobacter baumannii, a multidrug-resistant opportunistic pathogen in new habitats: A systematic review. Microorganisms, 12(4): 644. DOI: https://doi.org/10.3390/microorganisms12040644

Andriani, D., Apriana, A.Y., Srikandace, Y., Ratnaningrum, D. & Endah, E.S. 2022. Polypropylene film and beads biodegradation by Lysinibacillus macroides isolated from coastal area of Muara Angke in Jakarta-Indonesia. IOP Conference Series: Earth and Environmental Science, 1017(1): 012019.

Balakrishnan, A., Kanchinadham, S.B.K. & Kalyanaraman, C. 2021. Studies on the effect of bacterial tannase supplementation to biodegradation of tannins in tannery wastewater. Industrial and Engineering Chemistry Research, 60(47): 16854-16863. DOI: https://doi.org/10.1021/acs.iecr.1c02987

Belur, P.D. & Mugeraya, G. 2011. Microbial production of tannase: state of the art. Research Journal of Microbiology, 6(1): 25-40. DOI: https://doi.org/10.3923/jm.2011.25.40

Beniwal, V., Kumar, R., Kumari, A. & Chhokar, V. 2014. Microbial production of tannase. Microbes in the Service of Mankind, 463-488.

Besharati, M., Maggiolino, A., Palangi, V., Kaya, A., Jabbar, M., Eseceli, H., De Palo, P. & Lorenzo, J.M. 2022. Tannin in ruminant nutrition: Review. Molecules, 27(23): 8273. DOI: https://doi.org/10.3390/molecules27238273

Bhardwaj, R., Singh, B. & Bhat, T.K. 2003. Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425. Journal of Basic Microbiology, 43(6): 449-461. DOI: https://doi.org/10.1002/jobm.200310273

Bhatla, S.C. & Lal, M.A. 2018. Secondary metabolites. Plant physiology, development and metabolism: 765-808. DOI: https://doi.org/10.1007/978-981-99-5736-1_33

Brahmbhatt, D., Modi, H.A. & Jain, N.K. 2014. Preliminary isolation and screening of tannase producing bacteria and fungi. International Journal of Current Microbiology and Applied Sciences, 3(11): 193-203.

Brinda Lakshmi, M., Muthukumar, K. & Velan, M. 2012. Optimization of minimal salt medium for efficient phenanthrene biodegradation by Mycoplana sp. MVMB2 isolated from petroleum contaminated soil using factorial design experiments. Clean - Soil, Air, Water, 41(1): 51-59. DOI: https://doi.org/10.1002/clen.201000208

Brouwer, P., Schluepmann, H., Nierop, K. G. J., Elderson, J., Bijl, P. K., van der Meer, I., de Visser, W., Reichart, G. J., Smeekens, S. & van der Werf, A. 2018. Growing Azolla sp. to produce sustainable protein feed: the effect of differing species and CO2 concentrations on biomass productivity and chemical composition. Journal of the Science of Food and Agriculture, 98(12): 4759-4768. DOI: https://doi.org/10.1002/jsfa.9016

Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F.J. & Queipo-Ortuño, M.I. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, 24(8): 1415-1422. DOI: https://doi.org/10.1016/j.jnutbio.2013.05.001

Cekanaviciute, E., Yoo, B.B., Runia, T.F., Debelius, J.W., Singh, S., Nelson, C.A., Kanner, R., Bencosme, Y., Lee, Y.K., Hauser, S.L., Crabtree-Hartman, E., Sand, I.K., Gacias, M., Zhu, Y., Casaccia, P., Cree, B.A.C., Knight, R., Mazmanian, S.K., & Baranzini, S. E. 2017. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences, 114(40): 10713-10718. DOI: https://doi.org/10.1073/pnas.1711235114

Choudhury, R., Middelkoop, A., Bolhuis, J. E. & Kleerebezem, M. 2019. Legitimate and reliable determination of the age-related intestinal microbiome in young piglets; rectal swabs and fecal samples provide comparable insights. Frontiers in microbiology, 10: 1886. DOI: https://doi.org/10.3389/fmicb.2019.01886

Cipriano-Salazar, M., Rojas-Hernández, S., Olivares-Pérez, J., Jiménez-Guillén, R., Cruz-Lagunas, B., Camacho-Díaz, L.M., & Ugbogu, A.E. 2018. Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. Microbial pathogenesis, 117: 255-258. DOI: https://doi.org/10.1016/j.micpath.2018.01.045

Corrêa, T.A.F., Rogero, M.M., Hassimotto, N.M.A. & Lajolo, F.M. 2019. The two-way polyphenols-microbiota interactions and their effects on obesity and related metabolic diseases. Frontiers in nutrition, 6: 188. DOI: https://doi.org/10.3389/fnut.2019.00188

Das, A.K., Islam, M.N., Faruk, M.O., Ashaduzzaman, M. & Dungani, R. 2020. Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135: 58-70. DOI: https://doi.org/10.1016/j.sajb.2020.08.008

de Oliveira, M. N. V., Jewell, K. A., Freitas, F. S., Benjamin, L. A., Tótola, M. R., Borges, A. C., Moraes, C. A., & Suen, G. 2013. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Veterinary microbiology, 164(3-4): 307-314. DOI: https://doi.org/10.1016/j.vetmic.2013.02.013

Dhiman, S. & Mukherjee, G. 2020. Prospects of bacterial tannase catalyzed biotransformation of agro and industrial tannin waste to high value gallic acid. Biorefinery Production Technologies for Chemicals and Energy: 129-143. DOI: https://doi.org/10.1002/9781119593065.ch7

Dhiman, S., Mukherjee, G., Kumar, A. & Majumdar, R.S. 2021. Enhanced production of tannase through RSM by Bacillus haynesii SSRY4 MN031245 under submerged fermentation. Journal of Scientific & Industrial Research, 80(08): 675-680. DOI: https://doi.org/10.56042/jsir.v80i08.39264

Durso, L.M., Miller, D.N., Schmidt, T.B. & Callaway, T. 2017. Tracking bacteria through the entire gastrointestinal tract of a beef steer. Agricultural & environmental letters, 2(1), 170016. DOI: https://doi.org/10.2134/ael2017.05.0016

Gheibipour, M., Ghiasi, S.E., Bashtani, M., Torbati, M.B.M. & Motamedi, H. 2022. The potential of tannin degrading bacteria isolated from rumen of Iranian Urial ram as silage additives. Bioresource Technology Reports, 18: 101024. DOI: https://doi.org/10.1016/j.biteb.2022.101024

Goel, G., Raghav, M., Beniwal, V. & Puniya, A.K. 2015. Anaerobic degradation of tannins in Acacia nilotica pods by Enterococcus faecalis in co-culture with ruminal microbiota. The Journal of General and Applied Microbiology, 61(1): 31-33. DOI: https://doi.org/10.2323/jgam.61.31

Govindarajan, R.K., Seemaisamy, R., Neelamegam, R., Muthukalingan, K. & Nagarajan, K. 2016. Isolation and characterization of tannase producing bacteria from the gut of Gryllotalpa krishnani. The Journal of Microbiology, Biotechnology and Food Sciences, 6(2): 813.

Haldar, S. & Nazareth, S.W. 2018. Taxonomic diversity of bacteria from mangrove sediments of Goa: Metagenomic and functional analysis. 3 Biotech, 8(10): 436. DOI: https://doi.org/10.1007/s13205-018-1441-6

Hernandez-Pena, C.C., Lares-Villa, F., Santos-Villalobos, S.D.L., EstradaAlvarado, M.I., Cruz-Soto, A., Flores-Tavizon, E. & Soto-Padilla, M.Y. 2021. Reduction in concentration of chromium (VI) by Lysinibacillus macroides isolated from sediments of the Chapala Lake, Mexico. Anais da Academia Brasileira de Ciências, 93(2). DOI: https://doi.org/10.1590/0001-3765202120190144

Hidayat, C., Irawan, A., Jayanegara, A., Sholikin, M.M., Prihambodo, T.R., Yanza, Y.R., Wina, E., Sadarman, S., Krisnan, R. & Isbandi, I. 2021. Effect of dietary tannins on the performance, lymphoid organ weight, and amino acid ileal digestibility of broiler chickens: A meta-analysis. Veterinary world, 14(6): 1405-1411. DOI: https://doi.org/10.14202/vetworld.2021.1405-1411

Huang, Q., Liu, X., Zhao, G., Hu, T. & Wang, Y. 2018. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2): 137-150. DOI: https://doi.org/10.1016/j.aninu.2017.09.004

Isah, D., Shugaba, A. & Milala, M.A. 2017. Studies on the production of tannase by Staphylococcus aureus. Journal of Sciences and Multidisciplinary Research, 9(2): 21-31.

Jayamani, E., Rajamuthiah, R., Larkins-Ford, J., Fuchs, B.B., Conery, A.L., Vilcinskas, A., Ausubel, F.M. & Mylonakis, E. 2015. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model. Antimicrobial Agents and Chemotherapy, 59(3): 1728-1737. DOI: https://doi.org/10.1128/AAC.04198-14

Jebur, H.A. 2020. Optimization of production and partial purification of tannase from local isolate of Bacillus licheniformis HJ2020 MT14171. Plant Archives, 20(2): 2963-2968.

Jiménez, N., Esteban-Torres, M., Mancheño, J.M., de Las Rivas, B. & Muñoz, R. 2014. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Applied and environmental microbiology, 80(10): 2991-2997. DOI: https://doi.org/10.1128/AEM.00324-14

Kaczmarek-Szczepańska, B., Sionkowska, M.M., Mazur, O., Świątczak, J. & Brzezinska, M. S. 2021. The role of microorganisms in biodegradation of chitosan/tannic acid materials. International Journal of Biological Macromolecules, 184: 584-592. DOI: https://doi.org/10.1016/j.ijbiomac.2021.06.133

Kathuria, A., Singhal, P. & Singh, N. 2018. Tannin biodegradation by tannase produced from Aspergillus terreus ITCC 8413.11 and its culture conditions. Bulletin of Environment, Pharmacology and Life Sciences, 8: 35-38.

Knight, D.B., Rudin, S.D., Bonomo, R.A. & Rather, P.N. 2018. Acinetobacter nosocomialis: defining the role of efflux pumps in resistance to antimicrobial therapy, surface motility, and biofilm formation. Frontiers in microbiology, 9: 1902. DOI: https://doi.org/10.3389/fmicb.2018.01902

Kumar, K., Chaudhary, L.C., Agarwal, N. & Kamra, D.N. 2014. Isolation and characterization of tannin-degrading bacteria from the rumen of goats fed oak (Quercus semicarpifolia) leaves. Agricultural Research, 3(4): 377-385. DOI: https://doi.org/10.1007/s40003-014-0121-y

Kumar, M., Rana, S., Beniwal, V. & Salar, R.K. 2015. Optimization of tannase production by a novel Klebsiella pneumoniae KP715242 using central composite design. Biotechnology Reports, 7: 128-134. DOI: https://doi.org/10.1016/j.btre.2015.06.002

Kumar, M., Singh, A., Beniwal, V. & Salar, R.K. 2016. Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach. AMB Express, 6 (46): 1-11. DOI: https://doi.org/10.1186/s13568-016-0217-9

Lall, K.R., Jones, K.R. & Garcia, G.W. 2018. Nutrition of six selected neo-tropical mammals in Trinidad and Tobago with the potential for domestication. Veterinary Sciences, 5(2): 52. DOI: https://doi.org/10.3390/vetsci5020052

Lekshmi, R., Nisha, S.A., Kaleeswaran, B. & Alfarhan, A.H. 2020. Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid state fermentation. Journal of King Saud University-Science, 32(3): 1831-1837. DOI: https://doi.org/10.1016/j.jksus.2020.01.022

Lekshmi, R., Nisha, S.A., Vasan, P.T. & Kaleeswaran, B. 2021. A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environmental Research, 201, 111625. DOI: https://doi.org/10.1016/j.envres.2021.111625

Lima, J.S.D., Cruz, R., Fonseca, J.C., Medeiros, E.V.D., Maciel, M.D.H.C., Moreira, K.A. & Motta, C.M.D.S. 2014. Production, characterization of tannase from Penicillium montanense URM 6286 under SSF using agroindustrial wastes, and application in the clarification of grape juice (Vitis vinifera L.). The Scientific World Journal, 2014: 1-9. DOI: https://doi.org/10.1155/2014/182025

Liu, L., Guo, J., Zhou, X. F., Li, Z., Zhou, H. X. & Song, W.Q. 2022. Characterization and secretory expression of a thermostable tannase from Aureobasidium melanogenum T9: Potential candidate for food and agricultural industries. Frontiers in Bioengineering and Biotechnology, 9: 769816. DOI: https://doi.org/10.3389/fbioe.2021.769816

Lourenco, J.M., Kieran, T.J., Seidel, D.S., Glenn, T.C., Silveira, M.F.D., Callaway, T.R. & Stewart Jr, R.L. 2020. Comparison of the ruminal and fecal microbiotas in beef calves supplemented or not with concentrate. PLoS ONE, 15(4): e0231533. DOI: https://doi.org/10.1371/journal.pone.0231533

Mohammadabadi, T., Gheibipour, M., Motamedi, H., Chaji, M. & Abbas, B. A. 2021. Isolation and identification of tannin-degrading bacteria from deer gut and potency for improving nutritional value of tannin rich plants. 17(1): 65-75.

Mohammed, Y.H.I. 2016. Isolation and characterization of tannic acid hydrolysing bacteria from soil. Biochemistry & Analytical Biochemistry, 5(1): 254. DOI: https://doi.org/10.4172/2161-1009.1000254

Narayanaswamy, S., Hanumegowda, L., Sadhasivam, J. & Rangappa, N.B. 2023. Enterobacter hormaechei Z8b-60: A Tannin Degrading Bacteria Isolated from slaughterhouse waste. European Journal of Biology and Biotechnology, 4(4): 8-14. DOI: https://doi.org/10.24018/ejbio.2023.4.3.484

Noguchi, N., Ohashi, T., Shiratori, T., Narui, K., Hagiwara, T., Ko, M., Watanabe, K., Miyahara, T., Taira, S., Moriyasu, F. & Sasatsu, M. 2007. Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. Journal of Gastroenterology, 42(5): 346-351. DOI: https://doi.org/10.1007/s00535-007-2012-5

Noor, M. & Al-Bayyar, A.H. 2018. Optimization of tannase production by Lactobacillus plantarum. J. Res. Ecol., 6(2): 2155-2168.

Piekarska-Radzik, L. & Klewicka, E. 2021. Mutual influence of polyphenols and Lactobacillus spp. bacteria in food: A review. European Food Research and Technology, 247(1): 9-24. DOI: https://doi.org/10.1007/s00217-020-03603-y

Rodríguez, H., de las Rivas, B., Gómez-Cordovés, C. & Muñoz, R. 2008. Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International journal of food microbiology, 121(1): 92-98. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.11.002

Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K.R., Zinjarde, S.S., Dhakephalkar, P. K. & Chopade, B.A. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6): 556-566. DOI: https://doi.org/10.4014/jmb.1012.12006

Roy, R., Tiwari, M., Donelli, G. & Tiwari, V. 2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1): 522-554. DOI: https://doi.org/10.1080/21505594.2017.1313372

Rungsirivanich, P. & Thongwai, N. 2020. Antibacterial activity and tannin tolerance of Bacillus spp. isolated from leaves of Miang (Camellia sinensis (L.) Kuntze var. assamica (JW Mast.) Kitam.). International Journal of Bioscience, Biochemistry and Bioinformatics, 10(1): 26-33. DOI: https://doi.org/10.17706/ijbbb.2020.10.1.26-33

Saad, M.M., Saad, A.M., Hassan, H.M., Ibrahim, E.I., Abdelraof, M. & Ali, B.A. 2023. Optimization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste. Bioresources and Bioprocessing, 10(1): 73. DOI: https://doi.org/10.1186/s40643-023-00686-9

Sarwat, S. 2014. Isolation and Identification of Tannase Producing Bacteria From Environmental Soil Sample (PhD). North South University, Dhaka, Bangladesh.

Schmidt, J. & Zsédely, E. 2011. Nutrition of ruminants. University of West-Hungary, Sopron, Hungary.

Selvaraj, S., Natarajan, K., Nowak, A. & Murty, V.R. 2021. Mathematical modeling and simulation of newly isolated Bacillus cereus M1GT for tannase production through semi-solid state fermentation with agriculture residue triphala. South African Journal of Chemical Engineering, 35(1): 89-97. DOI: https://doi.org/10.1016/j.sajce.2020.10.001

Shakir, H.A., Javed, I., Irfan, M., Ali, S., Khan, M., Qazi, J.I. & Yousaf, M.A. 2022a. Tannase production from Bacillus amyloliquefaciens in submerged fermentation through response surface methodology: Tannase production from Bacillus amyloliquefaciens. Biological Sciences-PJSIR, 65(2): 95-103.

Shakir, H.A., Khan, M., Irfan, M., Ali, S., Yousaf, M.A., Javed, I., Qazi, J. I. & Bukhari, S.S. I. 2022b. Production and characterization of tannase by Bacillus subtilis in solid state fermentation of corn leaves. Journal of Applied Biotechnology Reports, 9(1): 516-530.

Sharma, S., Bhat, T.K. & Dawra, R.K. 2000. A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 279(1): 85-89. DOI: https://doi.org/10.1006/abio.1999.4405

Smeriglio, A., Barreca, D., Bellocco, E. & Trombetta, D. 2017. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, 174(11): 1244-1262. DOI: https://doi.org/10.1111/bph.13630

Srivastava, A. & Kar, R. 2010. Application of immobilized tannase from Aspergillus niger for the removal of tannin from myrobalan juice. Indian Journal of Microbiology, 50: 46-51. DOI: https://doi.org/10.1007/s12088-010-0029-6

Subbalaxmi, S. & Murty, V.R. 2016. Process optimization for tannase production by Bacillus gottheilii M2S2 on inert polyurethane foam support. Biocatalysis and agricultural biotechnology, 7: 48-55. DOI: https://doi.org/10.1016/j.bcab.2016.05.004

Susan, C.G. & Madhan, R. 2021. Bacterial degradation of bacteriostatic polyphenols, tannins. Journal of Natural Products and Resources, 7(2): 272–275. DOI: https://doi.org/10.30799/jnpr.100.21070201

Sutaoney, P., Akhand, A., Meshram, M., Sinha, S., Joshi, V. & Shahadat, M. 2023. Tannase production using green biotechnology and its applications: A review. Biochemical Engineering Journal, 202: 109163. DOI: https://doi.org/10.1016/j.bej.2023.109163

Tahmourespour, A., Khalkhali, H., Tabatabaee, N. & Amini, I. 2016. Tannic acid degradation by Klebsiella strains isolated from goat feces. Biological Journal of Microorganisms, 8(1): 14-20.

Tahmourespour, A., Tabatabaee, N., Khalkhali, H. & Amini, I. 2017. Study of Tannin-degrading bacteria isolated from pistachio soft hulls and feces of goat feeding on it. Biological Journal of Microorganism, 5(20): 61-69.

Tong, Z., He, W., Fan, X. & Guo, A. 2022. Biological function of plant tannin and its application in animal health. Frontiers in Veterinary Science, 8: 803657. DOI: https://doi.org/10.3389/fvets.2021.803657

Tripathi, A.D., Sharma, A.B.L. & Lakshmi, B. 2016. Study on tannase producing Bacillus megaterium isolated from tannery effluent. International Journal of Advanced Research in Biological Sciences, 3(7): 28-35.

Unban, K., Kochasee, P., Shetty, K. & Khanongnuch. 2020. Tannin-tolerant and extracellular tannase producing Bacillus sp. isolated from traditional fermented tea leaves and their probiotic functional properties. Foods, 9(4): 490. DOI: https://doi.org/10.3390/foods9040490

Wang, D., Liu, Y., Lv, D., Hu, X., Zhong, Q., Zhao, Y. & Wu, M. 2018. Substrates specificity of tannase from Streptomyces sviceus and Lactobacillus plantarum. AMB Express, 8(1): 1. DOI: https://doi.org/10.1186/s13568-018-0677-1

Wareth, G., Neubauer, H. & Sprague, L.D. 2019. Acinetobacter baumannii-a neglected pathogen in veterinary and environmental health in Germany. Veterinary research communications, 43(1): 1-6. DOI: https://doi.org/10.1007/s11259-018-9742-0

Whitman, W.B. 2015. Bergey's Manual of Systematics of Archaea and Bacteria. Wiley.

Wong, D., Nielsen, T.B., Bonomo, R.A., Pantapalangkoor, P., Luna, B. & Spellberg, B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clinical microbiology reviews, 30(1): 409-447. DOI: https://doi.org/10.1128/CMR.00058-16

Xu, H., Zhang, X., Li, P., Luo, Y., Fu, J., Gong, L., Lv, Z. & Guo, Y. 2023. Effects of tannic acid supplementation on the intestinal health, immunity, and antioxidant function of broilers challenged with Necrotic enteritis. Antioxidants, 12(7): 1476. DOI: https://doi.org/10.3390/antiox12071476

Yuan, Y., Li, L., Zhao, J. & Chen, M. 2020. Effect of tannic acid on nutrition and activities of detoxification enzymes and acetylcholinesterase of the fall webworm (Lepidoptera: Arctiidae). Journal of insect science, 20(1): 8. DOI: https://doi.org/10.1093/jisesa/ieaa001

Published

30-09-2024

How to Cite

Suhaimi, M. S., Zailani , F. A. ., Mohd Zaki, N. F. S. ., Aris, F., Mat Jalil, M. T. ., & Zakaria, N. A. (2024). Isolation and Identification of Tannin-Degrading Bacteria From Goat Feces, Ruminal Fluid, and Rumen Gut. Malaysian Applied Biology, 53(3), 23–37. https://doi.org/10.55230/mabjournal.v53i3.2999

Issue

Section

Research Articles

Most read articles by the same author(s)