Identification and Functional Analysis of Git3 G Protein-Coupled Receptors in Ganoderma boninense PER71

https://doi.org/10.55230/mabjournal.v53i4.3126

Authors

  • Khairunnisa Hanisah Mohd Daud Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Mohd Faizal Abu Bakar Malaysia Genome and Vaccine Institute, National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000 Kajang, Selangor, Malaysia
  • Izwan Bharudin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Shazilah Kamaruddin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Doris Huai Xia Quay Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Farah Diba Abu Bakar Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Abdul Munir Abdul Murad Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Keywords:

Artificial infection, short hairpin RNA, carbon sensor, G Protein-Coupled receptors, Git3, RNA interference

Abstract

G protein-coupled receptors (GPCRs) are integral components of eukaryotic heterotrimeric G proteins, playing crucial roles in detecting extracellular signals and initiating the activity of signaling proteins within cells to activate cellular responses to these signals. The objectives of this study are to identify and characterize the function of Git3, a Class III GPCR protein, in the oil palm pathogen Ganoderma boninense. To identify the potential genes encoded for GPCR in this fungus, intensive data mining on the genome and transcriptome data has been carried out. A total of six classes of GPCRs have been identified. These include Class II pheromone detectors, Class III carbon detectors, Class IV nitrogen detectors, Class VII proteins similar to glycosyltransferase, Class VIII proteins similar to hemolysin, and Class X protein receptors. Among these, the Class III protein Git3, postulated to be involved in glucose sensing and fungal pathogenicity, was selected for gene knockdown using RNA interference (RNAi). A plasmid, designated pUChph-GIT3, was constructed, to target git3 silencing by incorporating a hygromycin resistance gene cassette and antisense sequences of git3. Transformation of G. boninense PER71 with pUChph-GIT3 produced five potential Δgit3 gene-silenced mutants. PCR analysis confirmed the integration of the RNAi expression cassette into the fungal genome. Quantitative PCR (qPCR) analysis revealed significant reductions in git3 expression in three G. boninense mutants, M42, M66, and M5 by 47%, 23%, and 13%, respectively. The Disease Severity Index (DSI) indicated slower disease progression in oil palm plantlets infected with Δgit3 mutants compared to those infected with wild-type G. boninense PER71. In conclusion, this study successfully isolated and characterized the git3 GPCR from G. boninense and demonstrated that it might play a role during the early stages of infection, as the mutants were able to slow the progression of infection in oil palm plantlets.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Affeldt, K.J., Brodhagen, M. & Keller, N.P. 2012. Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins, 4(9): 695-717. DOI: https://doi.org/10.3390/toxins4090695

Azmi, A.N.N., Bejo, S.K., Jahari, M., Muharam, F.M., Yule, I. & Husin, N.A. 2020. Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23): 1-21. DOI: https://doi.org/10.3390/rs12233920

Bharudin, I., Ab Wahab, A.F.F., Abd Samad, M.A., Xin Yie, N., Zairun, M.A., Abu Bakar, F.D. & Murad, A.M.A. 2022. Review update on the life cycle, plant-microbe interaction, genomics, detection and control strategies of the oil palm pathogen Ganoderma boninense. Biology, 11(2): 1-18. DOI: https://doi.org/10.3390/biology11020251

Brown, N.A., Schrevens, S., Van Dijck, P. & Goldman, G. H. 2018. Fungal G-protein-coupled receptors: Mediators of pathogenesis and targets for disease control. Nature Microbiology, 3(4): 402-414. DOI: https://doi.org/10.1038/s41564-018-0127-5

El-Defrawy, M.M.H. & Hesham, A.E.L. 2020. G-protein-coupled receptors in fungi. In: Fungal Biotechnology and Bioengineering. A.E. Hesham, R.S. Upadhyay, G.D.Sharma, C. Manoharachary and V.K. Gupta (Eds.). Springer Nature, Switzerland. 37-126 pp. DOI: https://doi.org/10.1007/978-3-030-41870-0_3

Galagan, J.E., Calvo, S.E., Borkovich, K.A., Selker, E.U., Read, N.O., Jaffe, D., FitzHugh, W., Ma, L.J., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels, R., Wang, S., Nielsen, C.B., Butler, J., Endrizzi, M., Qui, D., Ianakiev, P. & Birren, B. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422(6934): 859-868. DOI: https://doi.org/10.1038/nature01554

Gao, J., Xu, X., Huang, K. & Liang, Z. 2021. Fungal G-protein-coupled receptors: A promising mediator of the impact of extracellular signals on biosynthesis of ochratoxin A. Frontiers in Microbiology, 12(February): 1-15. DOI: https://doi.org/10.3389/fmicb.2021.631392

Gehrke, A., Heinekamp, T., Jacobsen, I.D. & Brakhage, A.A. 2010. Heptahelical receptors GprC and GprD of Aspergillus fumigatus are essential regulators of colony growth, hyphal morphogenesis, and virulence. Applied and Environmental Microbiology, 76(12): 3989-3998. DOI: https://doi.org/10.1128/AEM.00052-10

Goh, K.M., Dickinson, M., Alderson, P., Yap, L.V. & Supramaniam, C.V. 2016. Development of an in planta infection system for the early detection of Ganoderma spp. in oil palm. Journal of Plant Pathology, 98(2): 255-264.

Han, K.H., Seo, J.A. & Yu, J.H. 2004. A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Molecular Microbiology, 51(5): 1333-1345. DOI: https://doi.org/10.1111/j.1365-2958.2003.03940.x

Hofmann, K. & Stoffel, W. 1993. Tmbase-A database of membrane spanning protein segments [WWW Document]. URL https://api.semanticscholar.org/CorpusID:83288447 (accessed 8.22.23).

Isaac, I.L., Walter, A.W.C.Y., Bakar, M.F.A., Idris, A.S., Bakar, F.D.A., Bharudin, I. & Murad, A.M.A. 2018. Transcriptome datasets of oil palm pathogen Ganoderma boninense. Data in Brief, 17: 1108-1111. DOI: https://doi.org/10.1016/j.dib.2018.02.027

Ishchuk, O.P., Ahmad, K.M., Koruza, K., Bojanovič, K., Sprenger, M., Kasper, L., Brunke, S., Hube, B., Säll, T., Hellmark, T., Gullstrand, B., Brion, C., Freel, K., Schacherer, J., Regenberg, B., Knecht, W. & Piškur, J. 2019. RNAi as a tool to study virulence in the pathogenic yeast Candida glabrata. Frontiers in Microbiology, 10: 1679. DOI: https://doi.org/10.3389/fmicb.2019.01679

Käll, L., Krogh, A. & Sonnhammer, E.L.L. 2007. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Research, 35(SUPPL.2): 429-432. DOI: https://doi.org/10.1093/nar/gkm256

Khairi, M.H.F., Nor Muhammad, N.A., Bunawan, H., Murad, A.M.A. & Ramzi, A.B. 2022. Unveiling the core effector proteins of oil palm pathogen Ganoderma boninense via pan-secretome analysis. Journal of Fungi, 8(8): 793. DOI: https://doi.org/10.3390/jof8080793

Khaled, A.Y., Abd Aziz, S., Khairunniza Bejo, S., Mat Nawi, N., Jamaludin, D. & Ibrahim, N.U.A. 2020. A comparative study on dimensionality reduction of dielectric spectral data for the classification of basal stem rot (BSR) disease in oil palm. Computers and Electronics in Agriculture, 170(February): 105288. DOI: https://doi.org/10.1016/j.compag.2020.105288

Kraakman, L., Lemaire, K., Ma, P., Teunissen, W., Donaton, M.C., Van Dijck, P., Winderickx, J., de Winde, J.H. & Thevelein, J.M. 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Molecular Microbiology, 32(5): 1002-1012. DOI: https://doi.org/10.1046/j.1365-2958.1999.01413.x

Krishnan, A., Almén, M.S., Fredriksson, R. & Schiöth, H.B. 2012. The origin of GPCRs: Identification of mammalian like rhodopsin, adhesion, glutamate and frizzled GPCRs in fungi. PLoS ONE, 7(1): 29817. DOI: https://doi.org/10.1371/journal.pone.0029817

Lafon, A., Han, K.H., Seo, J.A., Yu, J.H. & d'Enfert, C. 2006. G-protein and cAMP-mediated signaling in aspergilli: A genomic perspective. Fungal Genetics and Biology, 43(7): 490-502. DOI: https://doi.org/10.1016/j.fgb.2006.02.001

Liu, L., Kloepper, J.W. & Tuzun, S. 1995. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology, 85: 843-847. DOI: https://doi.org/10.1094/Phyto-85-843

Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402-408. DOI: https://doi.org/10.1006/meth.2001.1262

Madihah, A.Z., Maizatul-Suriza, M., Idris, A.S., Bakar, M.F.A., Kamaruddin, S., Bharudin, I., Abu Bakar, F.D. & Murad, A.M.A. 2018. Comparison of DNA extraction and detection of Ganoderma, causal of basal stem rot disease in oil palm using loop-mediated isothermal amplification. Malaysian Applied Biology, 47(5): 119-127.

McIntyre, G.J. & Fanning, G.C. 2006. Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnology, 6: 1-8. DOI: https://doi.org/10.1186/1472-6750-6-1

Mercière, M., Laybats, A., Carasco-Lacombe, C., Tan, J.S., Klopp, C., Durand-Gasselin, T., Alwee, S.S.R.S., Camus-Kulandaivelu, L. & Breton, F. 2015. Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. Mycological Progress, 14: 103. DOI: https://doi.org/10.1007/s11557-015-1123-2

Mu, D., Shi, L., Ren, A., Li, M., Wu, F., Jiang, A. & Zhao, M. 2012. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum. PLoS ONE, 7(8): e43737. DOI: https://doi.org/10.1371/journal.pone.0043737

Notredame, C., Higgins, D.G. & Heringa, J. 2000. T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1): 205-217. DOI: https://doi.org/10.1006/jmbi.2000.4042

Nur-Rashyeda, R., Idris, A.S., Sundram, S., Zainol-Hilmi, N.H. & Ming, S.C. 2023. A field evaluation in fungicides application to control upper stem rot (USR) disease in oil palm caused by Ganoderma spp. Journal of Oil Palm Research, 35(2): 320-329.

Paterson, R.R.M. 2019. Ganoderma boninense disease of oil palm to significantly reduce production after 2050 in sumatra if projected climate change occurs. Microorganisms, 7(1): 4-6. DOI: https://doi.org/10.3390/microorganisms7010024

Raudaskoski, M. & Kothe, E. 2010. Basidiomycete mating type genes and pheromone signaling. Eukaryotic Cell, 9(6): 847-859. DOI: https://doi.org/10.1128/EC.00319-09

Rubio-Texeira, M., Van Zeebroeck, G., Voordeckers, K. & Thevelein, J.M. 2010. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Research, 10(2): 134-149. DOI: https://doi.org/10.1111/j.1567-1364.2009.00587.x

Sonnhammer, E.L., von Heijne, G. & Krogh, A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In: Proceedings International Conference on Intelligent Systems for Molecular Biology . ISMB, 6: 175-182.

Sulaiman, S., Othman, N.Q., Tan, J.S. & Lee, Y.P. 2020. Draft genome assembly dataset of the Basidiomycete pathogenic fungus, Ganoderma boninense. Data in Brief, 29: 105167. DOI: https://doi.org/10.1016/j.dib.2020.105167

Tamari, F., Hinkley, C.S. & Ramprashad, N. 2013. A comparison of DNA extraction methods using Petunia hybrida tissues. Journal of Biomolecular Techniques, 24(3): 113-118.

Tamura, K., Stecher, G. & Kumar, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7): 3022-3027. DOI: https://doi.org/10.1093/molbev/msab120

Utomo, C., Tanjung, Z.A., Aditama, R., Buana, R.F.N., Pratomo, A.D.M., Tryono, R. & Liwang, T. 2018. Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm. Genome Announcements, 6(17): e00122-18. DOI: https://doi.org/10.1128/genomeA.00122-18

Wess, J., Han, S.J., Kim, S.K., Jacobson, K.A. & Li, J.H. 2008. Conformational changes involved in G-protein-coupled-receptor activation. Trends in Pharmacological Sciences, 29(12): 616-625. DOI: https://doi.org/10.1016/j.tips.2008.08.006

Xue, C., Bahn, Y.S., Cox, G.M. & Heitman, J. 2006. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Molecular Biology of the Cell, 17(2): 667-679. DOI: https://doi.org/10.1091/mbc.e05-07-0699

Yu, X., Ji, S.L., He, Y.L., Ren, M.F. & Xu, J.W. 2014. Development of an expression plasmid and its use in genetic manipulation of Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Higher Basidiomycetes). International Journal of Medicinal Mushrooms, 16(2): 161-168. DOI: https://doi.org/10.1615/IntJMedMushr.v16.i2.60

Published

27-10-2024

How to Cite

Mohd Daud, K. H. ., Bakar, M. F. A. ., Bharudin, I., Kamaruddin, S., Quay, D. H. X., Bakar, F. D. A., & Murad, A. M. A. (2024). Identification and Functional Analysis of Git3 G Protein-Coupled Receptors in Ganoderma boninense PER71. Malaysian Applied Biology, 53(4), 125–137. https://doi.org/10.55230/mabjournal.v53i4.3126

Funding data

Most read articles by the same author(s)