Three Isolate of Actinomycetes As Biological Control Against Magnaporthe orzyae and Fusarium solani

Authors

  • Aisyah Fatiha Zailan Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Muhammad Asyraff Abdul Samad Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Anis Farhan Fatimi Ab Wahab FGV Innovation Center (Biotechnology), PT. 23417 Lengkuk Teknologi, 71760 Bandar Enstek, Negeri Sembilan, Malaysia
  • Shazilah Kamaruddin Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Doris Quay Huai Xia Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Ahmad Bazli Ramzi Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
  • Farah Diba Abu Bakar Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Abdul Munir Abdul Murad Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Izwan Bharudin Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Keywords:

actinomycete, fungal pathogens, biocontrol agent, streptomyces

Abstract

Phytopathogens are causing global food security concerns, resulting in approximately 12.5% crop loss. These fungi significantly impact plant physiology, growth, and development. Traditional fungicides used for control are known to be harmful to both humans and the environment. Therefore, this study advocates an eco-friendly approach using biological control agents to curb phytopathogenic fungi growth. This research focuses on identifying potential antagonistic microorganisms capable of inhibiting two common phytopathogenic fungi: Magnaporthe oryzae, responsible for rice blast disease, and Fusarium solani, causing Fusarium wilt disease. The inhibitory strength of the microorganisms isolated from six different locations in Peninsula Malaysia was tested in vitro via dual culture assays. Our findings revealed three actinomycete species isolated from Bangi Forest Reserve, UKM, namely Streptomyces morookaense UKM1, Streptomyces rubrisoli UKM1, and Streptomyces gelaticus UKM1 exhibit a remarkable ability to inhibit the growth of both M. oryzae and F. solani, with a percentage inhibition radial growth (PIRG) exceeding 70%. Additionally, distinct differences in pathogens mycelia were observed after being grown together with the antagonistic microorganisms. In summary, our research identifies promising microorganisms with potent inhibition capabilities against multiple plant pathogens, offering potential solutions for sustainable agriculture and improved food security.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aditya, H.F., Gandaseca, S., Rayes, M.L. & Karam, D.S. 2021. Toposequent effect on soil morphology and classification of ultisol soil in the Ayer Hitam Forest Reserve, Peninsular Malaysia. Journal Sylva Lestari, 9(2): 202-212.

Aqeel, M., Ran, J., Hu, W., Irshad, M.K., Dong, L., Akram, M.A., Eldesoky, G.E., Aljuwayid, A.M., Chuah, L.F. & Deng, J. 2023. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. Chemosphere, 318: 137924.

Arie, T. 2019. Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of Pesticide Science, 44(4): 275-281.

Azadi, H., Samiee, A., Mahmoudi, H., Jouzi, Z., Khachak, P.R., Maeyer, P.D. & Witlox, F. 2015. Genetically modified crops and small-scale farmers: Main opportunities and challenges. Critical Reviews in Biotechnology, 36(3): 434-446.

Becher, P.G., Verschut, V., Bibb, M.J., Bush, M.J., Molnar, B.P., Barane, E., Al-Bassam, M.M., Chandra, G., Song, L., Challis, G.L., Buttner, M.J., & Flardh, K. 2020. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nature Microbiology, 5(6): 821-829.

Bharudin, I., Wahab, A.F.F.A., Samad, M.A.A., Yie, N.X., Zairun, M.A., Bakar, F.D.A. & Murad, A.M.A. 2022. Review update on the life cycle, plant-microbe interaction, genomics, detection and control strategies of the oil palm pathogen Ganoderma boninense. Biology, 11(2): 251.

Bonaterra, A., Badosa, E., Daranas, N., Frances, J., Rosello, G. & Montesinos, E. 2022. Bacteria as biological control agents of plant diseases. Microorganisms, 10(9): 1759.

Chai, C.X., Samat, A., Mohd-Taib, F.S., Bharudin, I. & Tim, J. 2023. Fungal infection of sea turtle eggs in the sea turtle hatcheries in Peninsular Malaysia. Fungal Ecology, 63: 101243.

Ding, Z., Zhang, Z., Zhong, J., Luo, D., Zhou, J. & Yang, J. 2016. Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6. Scientific Reports, 6: 37487.

FAO. 2021. New standards to curb the global spread of plant pests and diseases. Food and Agriculture Organization of the United Nations, Rome.

Gerber, N.N. 1967. Geosmin, an earthy-smelling substance isolated from actinomycetes. Biotechnology and Bioengineering, 9: 321e327.

Graham, L. & Orenstein, J.M. 2007. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nature Protocols, 2(10): 2439-2450.

Hao, J., Chai, Y.N., Ordonez, R.A., Wright, E.E., Archontoulis, S. & Schachtman, D.P. 2021. The effects of soil depth on the structure of microbial communities in agricultural soils in Iowa, USA. Applied and Environmental Microbiology, 87(4): e02673-20.

Hassal, K.A. 1965. Pesticides: their properties, uses and disadvantages II. Fungicides and herbicides. pesticides in relation to animals. British Veterinary Journal, 121(5): 199-211.

Isleib, J. 2012. Signs and symptoms of plant disease: Is it fungal, viral or bacterial?. Michigan State University Extension.

Jepson, P.C. 2001. Pesticides, uses and effects of. Encyclopedia of Biodiversity. 509-522 pp.

Kohl, J., Kolnaar, R. & Ravensberg, W.J. 2019.Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 845(10): 1-19.

Koller, W., Allan, C.R. & Kolattukudy, P.E. 1982. Role of cutinase and cell wall degrading enzymes in infection of Pisum sativum by Fusarium solani f. sp. pisi. Physiological Plant Pathology, 20(1): 47-52.

Kurt, S., Uysal, A., Soylu, E.M., Kara, M. & Soylu, S. 2020. Characterization and pathogenicity of Fusarium solani associated with dry root rot of citrus in the eastern Mediterranean region of Turkey. Journal of General Plant Pathology, 86: 326-332.

Li, Q., Chen, X., Jiang, Y. & Jiang, C. 2016. Morphological identification of actinobacteria. Actinobacteria - Basics and Biotechnological Applications London: IntechOpen Limited.

Lievens, L., Pollier, J., Goossens, A., Beyaert, R. & Staal, J. 2017. Abscisic acid as pathogen effector and immune regulator. Frontiers in Plant Science, 8: 587.

Lopez-Mondejar, R., Brabcova, V., Stursova, M., Davidova, A., Jansa, J., Cajthaml, T. & Baldrian, P. 2018. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. The ISME Journal, 12: 1768-1778.

Lozovaya, V.V., Lygin, A.V., Zernova, O.V., Li, S., Widholm, J.M. & Hartman, G.L. 2007. Lignin degradation by Fusarium solani f. sp. glycines. APS Publications, 90: 77-82.

Mat Salleh, K. 1999. The role and function of Universiti Kebangsaan Malaysia Permanent Forest Reserve in research and education. Pertanika Journal of Tropical Agricultural Science, 22(2): 185-198.

Pacios-Michelena, S., Gonzalez, C.N.A., Alvarez-Perez, O.B., Rodriguez-Herrera, R., Chavez-Gonzalez, M. & Valdes, R.A. 2021. Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Frontiers of Sustainability Food, 5: 696518.

Panday, D., Ojha, R.B., Chalise, D., Das, S. & Twanabasu, B. 2019. Spatial variability of soil properties under different land use in the Dang district of Nepal. Cogent Food and Agriculture, 5(1): 1600460.

Parajuli, S., Mahatara, B., Budhathoki, S., Paudel, M., Parajuli, K. & Adhikari, A. 2021. Scenario of pesticide import, formulation, consumption and the residue status among agriculture crops in Nepal. Big Data in Agriculture, (BDA) 3(2): 94-99.

Patkar, R.N., Benke, P.I., Qu, Z., Chen, Y.Y.C., Yang, F., Swarup, S. & Naqvi, N.I. 2015. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nature Chemical Biology, 11(9): 733-740.

Peng, Y., Li, S.J., Yan, J., Tang, Y., Cheng, J.P., Gao, A.J., Yao, X., Ruan, J.J. & Xu, B.L. 2021. Research progress on phytopathogenic fungi and their role as biocontrol agents. Frontiers in Microbiology, 12: 670135.

Prakash, S. & Sikdar, S. 2019. Organic vis-a-vis inorganic: A dilemma of 21st century farming. Indian Farmers' Digest, 52(11): 4-6.

Rafedzi, E.A.K., Bharudin, I., Kamaruddin, S., Bakar, F.D.A. & Murad, A.M.A. 2024. Effectiveness of the drought-tolerant plant growth promoting rhizobacteria (PGPR) that supports paddy growth in drought condition. Journal of Pure and Applied Microbiology, 18(2): 9055.

Shahid, M., Singh, B.N., Verma, S., Choudhary, P., Das, S., Chakdar, H., Murugan, K., Goswami, S.K. & Saxena, A.K. 2021. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Brazilian Journal of Microbiology, 52(4): 1687-1699.

Shariffah-Muzaimah, S.A., Idris, A.S., Madihah, A.Z., Dzolkhifli, O. & Kamaruzzaman, S. 2015. Isolation of actinomycetes from rhizosphere of oil palm (Elaeis guineensis Jacq.) for antagonism against Ganoderma boninense. Journal of Oil Palm Research, 27(1): 19-29.

Singh, B.K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J.E., Liu, H. & Trivedi, P. 2023. Climate change impacts on plant pathogens, food security and paths forward. Pertanika Nature Reviews Microbiology, 21: 640-656.

Tamura, K., Stecher, G. & Kumar, S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7): 3022-2027.

Tee, S.L., Samantha, L.D., Kamarudin, N., Akbar, Z., Lechner, A.M., Ashton-Butt, A. & Azhar, B. 2018. Urban forest fragmentation impoverishes native mammalian biodiversity in the tropics. Wiley: Ecology and Evolution, 8: 12506-12521.

Thambugala, K.M., Daranagama, D.A., Phillips, A.J.L., Kannangara, S.D. & Promputtha, I. 2020. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cell Infection Microbiology, 10: 604923.

Wahab, A.F.F.A., Zairun, M.A., Daud, K.H., Bakar, F.D.A., Bharudin, I. & Murad, A.M.A. 2022. Evaluation and improvement of potocols for Ganoderma boninense protoplast isolation and regeneration. Malaysian Applied Biology, 51(5): 43-57.

Yaakop, S. & Aman, A.Z. 2013. Does the fragmented and logged-over forest show a real hyperdynamism on braconid species? Malaysian Applied Biology, 42(2): 65-69.

Yusoff, A., Ashaari, F.H.M., Abd Samad, M.A., Fatimi, A.F. & Bharudin, I. 2021. Pengenalpastian bakteria tanah yang mempunyai aktiviti antikulat terhadap patogen kelapa sawit, Ganoderma boninese. Sains Malaysiana, 50(12): 3557-3567.

Published

30-11-2024

How to Cite

Zailan, A. F., Samad, M. A. A., Wahab, A. F. F. A., Kamaruddin, S. ., Xia, D. Q. H., Ramzi, A. B., Bakar, F. D. A., Murad, A. M. A., & Bharudin, I. (2024). Three Isolate of Actinomycetes As Biological Control Against Magnaporthe orzyae and Fusarium solani. Malaysian Applied Biology, 53(5), 75–85. Retrieved from https://jms.mabjournal.com/index.php/mab/article/view/3382

Funding data