Profiling The Growth Conditions and Persistent Organic Pollutants (POPS) Tolerance of Phenoliferia glacialis USM-PSY62

https://doi.org/10.55230/mabjournal.v53i4.3118

Authors

  • Ain Nur Afifah Azman Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Shazilah Kamaruddin Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Doris Huai Xia Quay Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Farah Diba Abu Bakar Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Noor Haza Fazlin Hashim Water Quality Laboratory, National Water Research Institute Malaysia (NAHRIM), Ministry of Environment and Water, Jalan Putra Permai, Seri Kembangan 43300, Selangor, Malaysia
  • Abdul Munir Abdul Murad Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Izwan Bharudin Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Keywords:

Antarctica, cold environment, pollutants, psychrotolerant, yeast

Abstract

Antarctica is characterized by extreme cold, isolated, and unique ecosystems. Nevertheless, Antarctica harbors diverse species of microorganisms, particularly in its ice-covered lakes and subglacial environments. These microorganisms have special adaptations to extreme cold and low-nutrient conditions. Some extremophiles, like psychrophiles can thrive in these harsh environments. Phenoliferia glacialis USM-PSY62, previously identified as Rhodotorula sp. USM-PSY62 is a psychrophilic yeast isolated from the ice brine of Antarctica. However, there is very little information on this psychrophilic yeast. This study aims to characterize the P. glacialis USM-PSY62 through the identification of the optimum growth parameters in different media (Yeast Peptone Dextrose, YPD & Yeast Malt, YM), temperature (4°C, 15°C, 20°C) and pH (6, 7, 8, 9) as well as their ability in carbon assimilation and extracellular enzyme production. It has an optimal growth in YPD compared to YM broth media. P. glacialis USM-PSY62 grows optimally at 15°C and pH 7.0. This Antarctic yeast enters the stationary phase on day six of incubation under optimum conditions. It appeared mainly as elongated-shape and oval-shaped with budding formation and was found to produce extracellular enzymes such as protease and amylase in the presence of 2% glucose concentration in YM media. P. glacialis USM-PSY62 also can assimilate various types of carbon sources including raffinose, arabinose, and maltose. Interestingly, the psychrophilic yeast presented growth in media supplemented with Persistent Organic Pollutants (POPs) such as dichlorophenyldichloroethylene (DDE) and polychlorinated biphenyl (PCB). These preliminary findings suggest that P. glacialis USM-PSY62 has tremendous potential for bioremediation application in polluted cold regions, as well as deepening our knowledge of its optimal growth conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Baeza, M., Zúñiga, S., Peragallo, V., Gutierrez, F., Barahona, S., Alcaino, J. & Cifuentes, V. 2022. Response to cold A comparative transcriptomic analysis in eight cold-adapted yeasts. Frontiers in Microbiology, 13(February): 828536. DOI: https://doi.org/10.3389/fmicb.2022.828536

Berry, E.D. & Foegeding, P.M. 1997. Cold temperature adaptation and growth of microorganisms. Journal of Food Protection, 60(12): 1583-1594. DOI: https://doi.org/10.4315/0362-028X-60.12.1583

Bharudin, I., Abu Bakar, M.F., Hashim, N.H.F., Mat Isa, M.N., Alias, H., Firdaus-Raih, M., Md Illias, R., Najimudin, N., Mahadi, N.M., Abu Bakar, F.D. & Abdul Murad, A.M. 2018. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice. Marine Environmental Research, 137: 169-176. DOI: https://doi.org/10.1016/j.marenvres.2018.03.007

Carrasco, M., Rozas, J. M., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. 2012. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island , The Sub- Antarctic Region. BMC Microbiology, 12: 251. DOI: https://doi.org/10.1186/1471-2180-12-251

Corsolini, S. & Sarà, G. 2017. The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs. Chemosphere, 177: 189-199. DOI: https://doi.org/10.1016/j.chemosphere.2017.02.116

de Menezes, G. C. A., Amorim, S. S., Gonçalves, V. N., Godinho, V. M., Simões, J. C., Rosa, C. A. & Rosa, L. H. 2019. Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica. Microorganisms, 7(10): 1-16. DOI: https://doi.org/10.3390/microorganisms7100445

Fernández, P.M., Martorell, M.M., Blaser, M.G., Ruberto, L.A.M., de Figueroa, L.I.C. & Mac Cormack, W.P. 2017. Phenol degradation and heavy metal tolerance of antarctic yeasts. Extremophiles, 21(3): 445-457. DOI: https://doi.org/10.1007/s00792-017-0915-5

Ferreira, E.M.S., de Sousa, F.M.P., Rosa, L.H. & Pimenta, R.S. 2019. Taxonomy and richness of yeasts associated with angiosperms, bryophytes, and meltwater biofilms collected in the Antarctic Peninsula Eskálath. Extremophiles, 23(1): 151-159. DOI: https://doi.org/10.1007/s00792-018-1069-9

Gonzalez, J.M. & Aranda, B. 2023. Microbial growth under limiting conditions-future perspectives. Microorganisms, 11(7): 1641. DOI: https://doi.org/10.3390/microorganisms11071641

Halim, M.A., Chai, C.N., Yam, H.C., Rosli, N., Azlan, A., Mohamad, F., Azzam, G. & Najimudin, N. 2023. Transcriptomic response of an Antarctic yeast Rhodotorula sp. USM-PSY62 to temperature changes. Malaysian Journal of Microbiology, 19(5): 458-471.

Hankin, L. & Anagnostakis, S.L. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3): 597. DOI: https://doi.org/10.2307/3758395

Kamaruddin, S., Redzuan, R.A., Minor, N., Seman, W.M.K.W., Md Tab, M., Jaafar, N.R., Ahmad Rodzli, N., Jonet, M.A., Bharudin, I., Yusof, N.A., Xia, D.Q.H., Mahadi, N.M., Murad, A.M.A. & Bakar, F.D.A. 2022. Biochemical characterisation and structure determination of a novel cold-active proline iminopeptidase from the psychrophilic yeast, Glaciozyma antarctica PI12. Catalysts, 12(7): 722. DOI: https://doi.org/10.3390/catal12070722

Kurtzman, C.P., Fell, J.W., Boekhout, T. & Robert, V. 2011. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: The Yeasts. C.P. Kurtzman, J.W. Fell and T. Boekhout (Eds.). Elsevier B.V. pp. 87-110. DOI: https://doi.org/10.1016/B978-0-444-52149-1.00007-0

Margesin, R. & Miteva, V. 2011. Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162(3): 346-361. DOI: https://doi.org/10.1016/j.resmic.2010.12.004

Margesin, R. 2009. Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles, 13: 257-262. DOI: https://doi.org/10.1007/s00792-008-0213-3

Margesin, R., Fonteyne, P., Schinner, F. & Sampaio, P. 2007. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from Alpine environments. International Journal of Systematic and Evolutionary Microbiology, 57(9): 2179-2184. DOI: https://doi.org/10.1099/ijs.0.65111-0

Margesin, R., Ludwikowski, T.M., Kutzner, A. & Wagner, A.O. 2022. Low-temperature biodegradation of lignin-derived aromatic model monomers by the cold-adapted yeast Rhodosporidiobolus colostri isolated from Alpine forest soil. Microorganisms, 10(3): 515. DOI: https://doi.org/10.3390/microorganisms10030515

Martínez-Ávila, L., Peidro-Guzmán, H., Pérez-Llano, Y., Moreno-Perlín, T., Sánchez-Reyes, A., Aranda, E., Ángeles de Paz, G., Fernández-Silva, A., Folch-Mallol, J.L., Cabana, H., Gunde-Cimerman, N. & Batista-García, R.A. 2021. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. Environmental Pollution, 271: 116358. DOI: https://doi.org/10.1016/j.envpol.2020.116358

Martorell, M.M., Ruberto, L.A.M., Fernández, P.M., Castellanos de Figueroa, L.I. & Mac Cormack, W.P. 2017. Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. Journal of Basic Microbiology, 57(6): 504-516. DOI: https://doi.org/10.1002/jobm.201700021

Murínová, S., Dercová, K. & Dudášová, H. 2014. Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. International Biodeterioration and Biodegradation, 91: 52-59. DOI: https://doi.org/10.1016/j.ibiod.2014.03.011

Peng, T.C., Peng, K.S. & Ling, C.M.W.V. 2020. Characterisation of an Antarctic yeast, Glaciozyma antarctica PI12. Borneo International Journal of Biotechnology (BIJB), 1(December): 89-102. DOI: https://doi.org/10.51200/bijb.vi.2154

Perini, L., Gostinčar, C. & Gunde-Cimerman, N. 2019. Fungal and bacterial diversity of Svalbard subglacial ice. Scientific Reports, 9: 20230. DOI: https://doi.org/10.1038/s41598-019-56290-5

Singh, V.P., Singh, P. & Haritashya, U.K. 2011. Encyclopedia of Snow, Ice and Glaciers. Springer Dordrecht. DOI: https://doi.org/10.1007/978-90-481-2642-2

Tamura, K., Stecher, G. & Kumar, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38(7): 3022-3027. DOI: https://doi.org/10.1093/molbev/msab120

Terajima, T., Shibahara, A., Nakano, Y., Kobayashi, S., Godwin, J.R., Nagaoka, K., Watanabe, G., Takada, H. & Mizukawa, K. 2022. Age-related accumulation of persistent organic chemicals in captive king penguins (Aptenodytes patagonicus). Journal of Veterinary Medical Science, 84(11): 1551-1555. DOI: https://doi.org/10.1292/jvms.22-0245

Touchette, D., Altshuler, I., Gostinčar, C., Zalar, P., Raymond-Bouchard, I., Zajc, J., McKay, C. P., Gunde-Cimerman, N. & Whyte, L. G. 2022. Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis. ISME Journal, 16(1): 221-232. DOI: https://doi.org/10.1038/s41396-021-01030-9

Treco, D.A. & Lundblad, V. 1993. Preparation of yeast media. Current Protocols in Molecular Biology, 23(1): 13.1.1-13.1.7). DOI: https://doi.org/10.1002/0471142727.mb1301s23

Tsuji, M. 2018. Genetic diversity of yeasts from East Ongul Island, East Antarctica and their extracellular enzymes secretion. Polar Biology, 41(2): 249-258. DOI: https://doi.org/10.1007/s00300-017-2185-1

Wang, Q.M., Groenewald, M., Takashima, M., Theelen, B., Han, P.J., Liu, X.Z., Boekhout, T. & Bai, F.Y. 2015a. Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Studies in Mycology, 81: 27-53. DOI: https://doi.org/10.1016/j.simyco.2015.08.002

Wang, Q.M., Yurkov, A.M., Göker, M., Lumbsch, H.T., Leavitt, S.D., Groenewald, M., Theelen, B., Liu, X.Z., Boekhout, T. & Bai, F.Y. 2015b. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Studies in Mycology, 81(January 2016): 149-189. DOI: https://doi.org/10.1016/j.simyco.2015.12.002

Xie, J., Tao, L., Wu, Q., Bian, Z., Wang, M., Li, Y., Zhu, G. & Lin, T. 2022. Bioaccumulation of organochlorine pesticides in Antarctic krill (Euphausia superba): Profile, influencing factors, and mechanisms. Journal of Hazardous Materials, 426: 128115. DOI: https://doi.org/10.1016/j.jhazmat.2021.128115

Yusof, N.A., Charles, J., Wan Mahadi, W.N.S., Murad, A.M.A. & Mahadi, N.M. 2021a. Characterization of Inducible HSP70 Genes in an Antarctic Yeast, Glaciozyma antarctica PI12, in Response to Thermal Stress. Microorganisms, 9: 2069. DOI: https://doi.org/10.3390/microorganisms9102069

Yusof, N.A., Hashim, N.H.F. & Bharudin, I. 2021b. Cold adaptation strategies and the potential of psychrophilic enzymes from the Antarctic yeast, Glaciozyma antarctica PI12. Journal of Fungi, 7(528): 1-16. DOI: https://doi.org/10.3390/jof7070528

Yusof, N.A., Masnoddin, M., Charles, J., Thien, Y.Q., Nasib, F.N., Wong, C.M.V.L., Abdul Murad, A.M., Mahadi, N.M. & Bharudin, I. 2022. Can Heat Shock Protein 70 (HSP70) serve as biomarkers in antarctica for future ocean acidification, warming and salinity stress? Polar Biology, 45(3): 371-394. DOI: https://doi.org/10.1007/s00300-022-03006-7

Published

27-10-2024

How to Cite

Azman, A. N. A. ., Kamaruddin, S. ., Quay, D. H. X., Bakar, F. D. A., Hashim, N. H. F. ., Murad, A. M. A., & Bharudin, I. . (2024). Profiling The Growth Conditions and Persistent Organic Pollutants (POPS) Tolerance of Phenoliferia glacialis USM-PSY62. Malaysian Applied Biology, 53(4), 103–113. https://doi.org/10.55230/mabjournal.v53i4.3118