Green Synthesis of Chrysanthemum morifolium Silver Nanoparticles and Evaluation of Its Antibacterial Activity

https://doi.org/10.55230/mabjournal.v53i4.3009

Authors

  • Lai Mun Leong Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia
  • Ghim Hock Ong Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Khye Er Loh Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia

Keywords:

Antribacterial, antibiofilm, Chrysanthemum morifolium, minimum inhibitory concentration, silver nanoparticles

Abstract

The increasing prevalence of microbial infections and antibiotic resistance has sparked interest in investigating the therapeutic potential of silver nanoparticles (AgNPs) as effective antimicrobial agents. The current study seeks to optimize the synthesis of AgNPs using Chrysanthemum morifolium (CM) extract and evaluate their antibacterial activity. Maximum synthesis of CM-AgNPs was achieved using 10 mM of AgNO3 and 20 mg/mL of CM extract at a 6:4 ratio and 3 hr of incubation period at pH 11 and 40°C. The Chrysanthemum morifolium-synthesized silver nanoparticles (CM-AgNPs) displayed a spherical shape, with sizes ranging from 12 to 34 nm. The minimum inhibitory concentration (MIC) against Pseudomonas mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae were 0.0117, 0.0117, 0.0031, and 0.100 mg/mL, respectively. CM-AgNPs demonstrated notable antibiofilm activity of 49.26%, 87.31%, and 66.23% against P. mirabilis, S. aureus, and K. pneumoniae, respectively. These results indicate that CM-AgNPs possess antibacterial properties and hold promise as antimicrobial agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alharbi, N.S., Alsubhi, N.S. & Felimban, A.I. 2022. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15(3): 109-124. DOI: https://doi.org/10.1016/j.jrras.2022.06.012

Arokiyaraj, S., Valan Arasu, M., Vincent, S., Prakash, N.U., Choi, S.H., Oh, Y.K., Choi K.C. & Kim, K.H. 2014. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: An in vitro study. International Journal of Nanomedicine, 9: 379-388. DOI: https://doi.org/10.2147/IJN.S53546

Batubara, R., Nelly, I. & Affandi O. 2021. GC-MS analysis of young and mature wild agarwood leaves (Aquilaria malaccensis Lamk) and its antioxidant potential, IOP Conference Series Earth and Environmental Science, 912(1): 012038. DOI: https://doi.org/10.1088/1755-1315/912/1/012038

Bruna, T., Maldonado-Bravo, F., Jara, P. & Caro, N. 2021. Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13): 7202. DOI: https://doi.org/10.3390/ijms22137202

Chung, I.M., Park, I., Kim, S.H., Thiruvengadam, M. & Rajakumar, G. 2016. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Research Letters, 11: 40. DOI: https://doi.org/10.1186/s11671-016-1257-4

Kalishwaralal, K., BarathManiKanth, S., Pandian, S.R.K., Deepak, V. & Gurunathan, S. 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 79(2): 340-344. DOI: https://doi.org/10.1016/j.colsurfb.2010.04.014

Kandiah, M. & De Silva, L.N. 2021. Microwave-assisted ecofriendly silver nanoparticle synthesis by varieties of Chrysanthemum morifolium Ramat: Assessing their antioxidant, photocatalytic and antibacterial activities. Journal of Metals, Materials and Minerals, 31(4): 51-61.

Klancnik, A., Piskernik, S., Jersek, B. & Mozina, S.S. 2010. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods, 81(2): 121-126. DOI: https://doi.org/10.1016/j.mimet.2010.02.004

Lamret, F., Varin-Simon, J., Velard, F., Terryn, C., Mongaret, C., Colin, M., Gangloff, S.C. & Reffuveille, F. 2021. Staphylococcus aureus strain-dependent biofilm formation in bone-like environment. Frontiers in Microbiology, 12: 714994. DOI: https://doi.org/10.3389/fmicb.2021.714994

Liang, W.L., Gong, D. & Zhang, W.K. 2021. The composition of chrysanthemum extracts and their pharmacological functions. STEMedicine, 2(5): 2021. DOI: https://doi.org/10.37175/stemedicine.v2i5.69

Melkamu, Z., Jeyaramraja, P.R. & Paulos, T. 2022. Optimization of the synthesis of silver nanoparticles using the leaf extract of Ocimum sanctum and evaluation of their antioxidant potential. Nano Express, 3(3): 035006. DOI: https://doi.org/10.1088/2632-959X/ac8fac

Nanotechnology Products Database, 2022. https://product.statnano.com/ (accessed 22.8.2022)

Park, E.J., Yi, J., Kim, Y., Choi, K. & Park, K. 2010, Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 24(3): 872-878. DOI: https://doi.org/10.1016/j.tiv.2009.12.001

Rafique, M., Sadaf, I., Rafique, M.S. & Tahir, M.B. 2017. A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology, 45: 1272-1291. DOI: https://doi.org/10.1080/21691401.2016.1241792

Published

27-10-2024

How to Cite

Leong, L. M., Ong, G. H., & Loh, K. E. (2024). Green Synthesis of Chrysanthemum morifolium Silver Nanoparticles and Evaluation of Its Antibacterial Activity. Malaysian Applied Biology, 53(4), 1–6. https://doi.org/10.55230/mabjournal.v53i4.3009

Most read articles by the same author(s)