Antioxidant Compounds and Activities of Roselle (Hibiscus sabdariffa L.) Decoction Residues from Cordial and Juice Production
Keywords:
Antioxidant activity, ethanolic extract, Hibiscus sabdariffa, roselleAbstract
Roselle is a popular plant in Malaysia, especially for its use in food and beverage production. The calyces of the roselle plant are commonly decocted to make roselle juice and cordial, resulting in a significant amount of waste in the form of decocted calyces. Surprisingly, these decocted calyces retain their dark red colour and are still intact although soften. However, to date, there is no research on the antioxidant compounds and activities of roselle decoction residues from cordial and juice production have been reported. Therefore, the aim of this study is to determine the phenolic compounds and antioxidant activities of the roselle decoction residues. The roselle decoction residues were evaluated for colour, Delta E (∆E), pH, total anthocyanin content (TAC), total phenolic content (TPC), total flavonoid content (TFC), DPPH radical scavenging assay, ferric reducing ability assay (FRAP), and ferrous ion chelating (FIC). All assays were also correlated and show positive effect among themselves. The decocted residues reported were still in acidic conditions ranged of pH 2 to 4. The decocted cordial residue (DCR) showed similar colour with control or fresh roselle calyx (FRC), and a bit duller in decocted juice residue (DJR). The DCR showed similar and slightly lower antioxidant content and activity of TAC, TPC, TFC, DPPH, FRAP and FIC to FRC but much better than DJR. Therefore, the DCR were still rich in anthocyanin contents and had good antioxidant activity without having colour changes. These residues have the capacity to be converted to wealth and could be an alternative source for natural antioxidants. Further research is needed to explore their potential applications in functional foods, dietary supplements, and pharmaceuticals. By harnessing the potential of roselle decoction residues, we can contribute to a more sustainable and environmentally friendly approach to food and beverage production.
Downloads
Metrics
References
Abdul Madik, M. 2017. Personal communication (Chairman of A. I. Agro Marketing). March 5, 2017.
Abu Bakar, M.F., Mohamed, M., Rahmat, A. & Fry, J. 2009. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry, 113(2): 479–483. DOI: https://doi.org/10.1016/j.foodchem.2008.07.081
Ajiboye, T.O., Salawu, N.A., Yakubu, M.T., Oladiji, A.T., Akanji, M.A. & Okogun, J.I. 2011. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug and Chemical Toxicology, 34(2): 109–115. DOI: https://doi.org/10.3109/01480545.2010.536767
AIChE. 2020. Waste valorization | AIChE. https://www.aiche.org/topics/energy/waste-valorization.
Amin, I., Azrina, A., Khoo, H.E., Prasad, K.N. & Kong, K.M. 2013. Antioxidants Assay: Principals Methods and Analyses. UPM press, Serdang. 120 pp. (Malay).
Awad, M., Jager, A. & Westing, L. 2000. Flavonoid and chlorogenic acid levels in apple fruit: characterisation of variation. Scientia Horticulturae, 83(3-4): 249-263. DOI: https://doi.org/10.1016/S0304-4238(99)00124-7
Azza, A.A., Ferial, M.A. & Esmat, A.A. 2011. Physico-chemical properties of natural pigments (anthocyanin) extracted from roselle calyxes. Journal of American Science, 7(7): 445 – 456.
Baiano, A. 2014. Recovery of biomolecules from food wastes - A review. Molecules, 19(9): 14821–14842. DOI: https://doi.org/10.3390/molecules190914821
Benzie, I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1): 70–76. DOI: https://doi.org/10.1006/abio.1996.0292
Boyer, J. & Liu, R. 2004. Apple phytochemicals and their health benefits. Nutrition Journal, 3: 5. DOI: https://doi.org/10.1186/1475-2891-3-5
Brand-Williams, W., Cuvelier, M.E. & Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1): 25–30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Castañeda-Ovando, A., Pacheco-Hernández, M.L., Páez-Hernández, M.E., Rodríguez, J.A. & Galán-Vidal, C.A. 2009. Chemical studies of anthocyanins: A review. Food Chemistry, 113(4): 859–871. DOI: https://doi.org/10.1016/j.foodchem.2008.09.001
Chew, Y.L., Goh, J.K. & Lim, Y.Y. 2009. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chemistry, 116(1): 13–18. DOI: https://doi.org/10.1016/j.foodchem.2009.01.091
Cid-Ortega, S. & Guerrero-Beltrán, J. 2015. Roselle calyces (Hibiscus sabdariffa), an alternative to the food and beverages industries: a review. Journal of Food Science and Technology, 52(11): 6859-6869. DOI: https://doi.org/10.1007/s13197-015-1800-9
Clemente, A., Sánchez-Vioque, R., Vioque, J., Bautista, J. & Millán, F. 1997. Chemical composition of extracted dried olive pomaces containing two and three phases. Food Biotechnology, 11(3): 273–291. DOI: https://doi.org/10.1080/08905439709549936
Contreras-Lopez, E., Castañeda-Ovando, A., González-Olivares, L.G. & Añorve-Morga, J. 2014. Effect of light on stability of anthocyanins in ethanolic extracts of Rubus fruticosus. Food and Nutrition Sciences, 5(06): 517. DOI: https://doi.org/10.4236/fns.2014.56058
Dewanto, V., Wu, X., Adom, K.K. & Liu, R.H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10): 3010–3014. DOI: https://doi.org/10.1021/jf0115589
Dinis, T.C.P., Madeira, V.M.C. & Almeida, L.M. 1994. Action of phenolic derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1): 161-169. DOI: https://doi.org/10.1006/abbi.1994.1485
Enaru, B., Drețcanu, G., Pop, T.D., Stǎnilǎ, A. & Diaconeasa, Z. 2021. Anthocyanins: Factors affecting their stability and degradation. Antioxidants, 10(12): 1967. DOI: https://doi.org/10.3390/antiox10121967
EPA. 2021. Reduce wasted food by feeding animals | Sustainable management of food | US EPA. https://www.epa.gov/sustainable-management-food/reduce-wasted-food-feeding-animals
Eslaminejad, T. & Zakaria, M. 2011. Morphological characteristics and pathogenicity of fungi associated with roselle (Hibiscus sabdariffa) diseases in Penang, Malaysia. Microbial Pathogenesis, 51(5): 325–337. DOI: https://doi.org/10.1016/j.micpath.2011.07.007
FAO. 2017. Global initiative on food loss and waste. Fao, 6. www.fao.org/publications%0Awww.fao.org/platform-food-loss-waste
FAO. 2019. The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome.
Gençdağ, E., Özdemir, E.E., Demirci, K., Görgüç, A. & Yılmaz, F.M. 2022. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Current Plant Biology, 29: 100238. DOI: https://doi.org/10.1016/j.cpb.2022.100238
Giusti, M.M. & Wrolstad, R.E. 2001. Characterization and measurement of anthocyanins by UV-Visible spectroscopy. In: Current Protocols in Food Analytical Chemistry, 00(1): F1.2.1–F1.2.13. DOI: https://doi.org/10.1002/0471142913.faf0102s00
Gulcin, I. & Alwasel, S.H. 2022. Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes, 10(1): 132. DOI: https://doi.org/10.3390/pr10010132
Halimatul, S.M.N., Amin, I., Mohd.-Esa, N., Nawalyah, A.G. & Siti Muskinah, M. 2007. Protein quality of roselle (Hibiscus sabdariffa L.) seeds. ASEAN Food Journal, 14(2): 131-140.
He, Z., Xu, M., Zeng, M., Qin, F. & Chen, J. 2016. Interactions of milk α- and β-casein with malvidin-3-o-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chemistry, 199: 314-322. DOI: https://doi.org/10.1016/j.foodchem.2015.12.035
Heijnen, C.G.M., Haenen, G.R.M.M., Minou Oostveen, R., Stalpers, E.M. & Bast, A. 2002. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radical Research, 36(5): 575–581. DOI: https://doi.org/10.1080/10715760290025951
Jill Burkhardt. 2020. Turning food waste into livestock feed | Canadian Cattlemen. URL https://www.canadiancattlemen.ca/features/turning-food-waste-into-livestock-feed/
Kalin, P., Gulcin, I. & Goren, A.C. 2015. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Records of Natural Product, 9(4): 496–502.
Kang, H.J., Ko, M.J. & Chung, M.S. 2021. Anthocyanin structure and pH dependent extraction characteristics from blueberries (Vaccinium corymbosum) and chokeberries (Aronia melanocarpa) in subcritical water state. Foods, 10(3): 527. DOI: https://doi.org/10.3390/foods10030527
Khoo, H.E., Azlan, A., Tang, S.T. & Lim, S.M. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61(1): 1361779. DOI: https://doi.org/10.1080/16546628.2017.1361779
Kori, A., Mahesar, S., Sherazi, S., Laghari, Z. & Panhwar, T. 2020. A review on techniques employed for encapsulation of the bioactive components of Punica granatum L. Journal of Food Processing and Preservation, 44(11): e14848. DOI: https://doi.org/10.1111/jfpp.14848
Kouakou, T.H., Konkon, N.G., Ayolie, K., Obouayeba, A.P., Abeda, Z.H. & Kone, M. 2015. Anthocyanin production in calyx and callus of roselle (Hibiscus sabdariffa L.) and its impact on antioxidant activity. Journal of Pharmacognosy and Phytochemistry, 4(3): 9-15.
Lachowicz, S., Wisniewski, R., Ochmian, I., Drzymała, K. & Pluta, S. 2019. Anti-microbiological, anti-hyperglycemic and anti-obesity potency of natural antioxidants in fruit fractions of saskatoon berry. antioxidants, 8(9): 397. DOI: https://doi.org/10.3390/antiox8090397
Laufenberg, G., Grüß, O. & Kunz, B. 1996. Neue Konzepte der Reststoffverwertung in der Lebensmittelindustrie – Chancen fur die Kartoffelstarkeindustrie. (New concepts for the utilisation of residual products from food industry – Prospects for the potato industry.). Starch-Stärke, 48: 315–321. DOI: https://doi.org/10.1002/star.19960480903
Laufenberg, G., Kunz, B., & Nystroem, M. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87(2): 167–198. DOI: https://doi.org/10.1016/S0960-8524(02)00167-0
Lim, Y.Y., Lim, T.T. & Tee, J.J. 2007. Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry, 103(3): 1003–1008. DOI: https://doi.org/10.1016/j.foodchem.2006.08.038
Liu, W., Wang, Y., Yu, L., Jiang, H., Guo, Z., Xu, H., Jiang, S.; Fang, H., Zhang, J., Su, M., Zhang, Z., Chen, X., Chen, X. & Wang, N. 2019. MdWRKY11 participates in anthocyanin accumulation in red-fleshed apples by affecting MYB transcription factors and the photoresponse factor MdHY5. Journal of Agricultural and Food Chemistry, 67(32): 8783-8793. DOI: https://doi.org/10.1021/acs.jafc.9b02920
Lobo, V., Patil, A., Phatak, A. & Chandra, N. 2010. Free radicals, antioxidants, and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8): 118–126. DOI: https://doi.org/10.4103/0973-7847.70902
Lourith, N. & Kanlayavattanakul, M. 2013. Antioxidant activity and stability of natural colour. Agro Food Industry Hi Tech, 24(5): 40–43.
Md Yusof, N., Hasan, M.H., Armayni, U.A., Ahmad, M.S. & Abdul Wahab, I. 2013. The ferrous ion chelating assay of extracts. The Open Conference Proceedings Journal, 4(1): 155–155. DOI: https://doi.org/10.2174/22102892013040100155
Md Yusof, N. 2018. Effect of different level of roselle (Hibiscus sabdariffa L.) seed to the tenderness of quail birds (Coriunix-coriunix) meat (B. Universiti Malaysia Terengganu.
Mercado-Mercado, G., Blancas-Benitez, F.J., Velderrain-Rodríguez, G.R., Montalvo-González, E., González-Aguilar, G.A., Alvarez-Parrilla, E. & Sáyago-Ayerdi, S.G. 2015. Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of Roselle (Hibiscus sabdariffa L.). Journal of Functional Foods, 18: 171–181. https://doi.org/10.1016/j.jff.2015.07.001 DOI: https://doi.org/10.1016/j.jff.2015.07.001
Modesto Junior, E.N., Martins, M.G., Pereira, G.A., Chisté, R.C. & Pena, R.S. 2023. Stability kinetics of anthocyanins of grumixama berries (Eugenia brasiliensis Lam.) during thermal and light treatments. Foods, 12(3): 565. https://doi.org/10.3390/foods12030565 DOI: https://doi.org/10.3390/foods12030565
Mohamed Aslam, A.R. 2018. Effect of feed supplemented with different concentration of roselle (Hibiscus sabdariffa L.) waste in postharvest quality of broiler chicken (Gallus gallus sp.) (BSc.). Universiti Malaysia Terengganu.
Mohd Ali, S.A., Che Mohd, C.R. & Latip, J. 2019. Comparison of phenolic constituent in Hibiscus sabdariffa cv. UKMR-2 calyx at different harvesting times. Sains Malaysiana, 48(7): 1417–1424. DOI: https://doi.org/10.17576/jsm-2019-4807-10
Mohd-Esa, N., Hern, F.S., Ismail, A. & Yee, C.L. 2010. Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chemistry, 122(4): 1055–1060. DOI: https://doi.org/10.1016/j.foodchem.2010.03.074
Molyneux, P. 2004. The use of the stable radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2): 211-219.
Musa, Y., Engku Ismail, E.A. & Yahaya, H. 2006. Manual teknologi penanaman rosel. Kuala Lumpur: Institut Penyelidikan dan Kemajuan Pertanian Malaysia (MARDI). 28 pp. (Malay).
Nur Amirah, Y. 2015. Effect of deficit irrigation on the growth and postharvest performance of roselle grown on BRIS soil (Master). Universiti Malaysia Terengganu.
Nyam, K.L., Leao, S.Y., Tan, C.P. & Long, K. 2012. In vitro antioxidant activities of extract and oil from roselle (Hibiscus sabdariffa L.) seed against sunflower oil autoxidation. Malaysian Journal of Nutrition, 18(2): 265–274.
Negreanu-Pirjol, B.-S., Oprea, O.C., Negreanu-Pirjol, T., Roncea, F.N., Prelipcean, A.-M., Craciunescu, O., Iosageanu, A., Artem, V., Ranca, A., Motelica, L., Lepadatu, A.-C., Cosma, M. & Popoviciu, D.R. 2023. Health benefits of antioxidant bioactive compounds in the fruits and leaves of Lonicera caerulea L. and Aronia melanocarpa (michx.) elliot. Antioxidants, 12(4): 951. DOI: https://doi.org/10.3390/antiox12040951
Oreopoulou, V. & Tzia, C. 2007. Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. In: Utilization of By-Products and Treatment of Waste in the Food Industry. V. Oreopoulou and W. Russ (Eds.). Springer, Boston.
Pacôme, O.A., Joseph, D.A., Guessan, N., David, J.P. & Hilaire, K.T. 2019. Some anthocyanins isolated and identified from petals and calyces of Hibiscus sabdariffa (Malvaceae). International Journal of Herbal Medicine, 7(5): 12-18.
Pina, F., Melo, M.J., Laia, C.A.T., Parola, A.J. & Lima, J.C. 2012. Chemistry and applications of flavylium compounds: A handful of colours. Chemical Society Reviews, 41(2): 869–908. DOI: https://doi.org/10.1039/C1CS15126F
Peredo Pozos, P.G.I., Ruiz-López, M.A., Zamora Nátera, J.F., Álvarez Moya, C., Barrientos Ramírez, L., Reynoso Silva, M., Rodríguez Macías, R., García-López, P.M., González Cruz, R., Salcedo Pérez, E. & Vargas Radillo, J.J. 2020. Antioxidant capacity and antigenotoxic effect of Hibiscus sabdariffa L. extracts obtained with ultrasound-assisted extraction process. Applied Sciences, 10(2): 560. DOI: https://doi.org/10.3390/app10020560
Purchase, B. 1995. Products from sugarcane. International Sugar Journal, 97(1154): 70–71.
Qaid, M.A.N., Wang, H., Gasmalla, M.A.A., Ma, C., Thabit, R., Tanver Rahman, M.R. & Tang, Y. 2014. Chemical composition and antioxidant activity of the essential oil of Pulicaria inuloides. Journal of Food and Nutrition Research, 2(5): 221–227. DOI: https://doi.org/10.12691/jfnr-2-5-3
Reyes, L.F. & Cisneros-Zevallos, L. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3): 885-894. DOI: https://doi.org/10.1016/j.foodchem.2005.11.002
Rivin, J., Miller, Z. & Matel, O. 2012. Using food waste as livestock feed. Waste Management, 34: 2–34.
Rohaya, A. & Noriham, A. 2013. Antioxidant Principles and In Vitro Evaluation Methods. UiTM Press, Shah Alam. 60 pp.
SAS Institute Inc. 2023. SAS Procedures Guide. SAS Studio 3.8. Cary, NC, USA. https://welcome.oda.sas.com/
Sáyago-Ayerdi, S.G., Arranz, S., Serrano, J. & Goñi, I. 2007. Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. Journal of Agricultural and Food Chemistry, 55(19): 7886–7890. DOI: https://doi.org/10.1021/jf070485b
Sáyago-Ayerdi, S.G., Brenes, A., Viveros, A. & Goñi, I. 2009. Antioxidative effect of dietary grape pomace concentrate on lipid oxidation of chilled and long-term frozen stored chicken patties. Meat Science, 83(3): 528–533. DOI: https://doi.org/10.1016/j.meatsci.2009.06.038
Schuessler, Z. 2023. Delta E 101. URL http://zschuessler.github.io/DeltaE/learn/
Sharara, M.S. 2017. Copigmentation effect of some phenolic acids on stabilization of roselle (Hibiscus sabdariffa) anthocyanin extract. American Journal of Food Science and Technology, 5(2): 45–52.
Sinniah, P. 2018. Effect of different concentrations of roselle waste (Hibiscus sabdariffa L.) on postharvest quality of japanese quail’s egg (BSc.). Universiti Malaysia Terengganu.
So, Y.S., Hyeonbin, O., Ki., Y.J., Si, Y.K. & Young, S.K. 2021. Effects of roselle (Hibiscus sabdariffa L.) calyx extract on the physicochemical characteristics, antioxidant activity and consumer preference of yogurt dressing. Progress in Nutrition, 23 (2): e2021065.
Swain, T. & Hillis, W.E. 1959. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1): 63–68. DOI: https://doi.org/10.1002/jsfa.2740100110
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Hawkins Byrne, D. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7): 669–675. DOI: https://doi.org/10.1016/j.jfca.2006.01.003
Wahyuningsih, S., Wulandari, L., Wartono, M.W., Munawaroh, H. & Ramelan, A.H. 2017. The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP Conference Series: Materials Science and Engineering, 193: 012047. DOI: https://doi.org/10.1088/1757-899X/193/1/012047
Wan Zaliha, W.S. 2009. Regulation of fruit colour development, quality, and storage life of cripps pink‘apple with deficit irrigation and plant bioregulators (Ph.D). Curtin University of Technology, Australia.
Wan Zaliha, W.S. & Singh, Z. 2010a. Fruit quality and postharvest performance of “cripps pink” apple in relation to withholding irrigation. Acta Horticulturae, 877: 147–154. DOI: https://doi.org/10.17660/ActaHortic.2010.877.12
Wan Zaliha, W.S. & Singh, Z. 2010b. Impact of regulated deficit irrigation on fruit quality and postharvest storage performance of “cripps pink” apple. Acta Horticulturae, 877: 155–162. DOI: https://doi.org/10.17660/ActaHortic.2010.877.13
Wu, H.Y., Yang, K.M. & Chiang, P.Y. 2018. Roselle anthocyanins: antioxidant properties and stability to heat and pH. Molecules, 23(6): 1357. DOI: https://doi.org/10.3390/molecules23061357
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2016/WAB01/UMT/03/1