Enhancing Jackfruit’s Bioactive Properties Through SCOBY Fermentation: Implications For Cosmeceuticals

https://doi.org/10.55230/mabjournal.v54i1.3190

Authors

  • Norhazniza Aziz Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Food Science and Technology Research Centre, MARDI, P.O. Box 12301, 50772, Kuala Lumpur, Malaysia
  • Koh Soo Peng Food Science and Technology Research Centre, MARDI, P.O. Box 12301, 50772, Kuala Lumpur, Malaysia
  • Norefrina Shafinaz Md Nor Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Keywords:

Anti-inflammatory, fermentation, jackfruit, phytochemical, SCOBY

Abstract

This study investigated the bio-processing technique of fermenting jackfruit pulp (JP) and leaves (JL) using a symbiotic culture of bacteria and yeast (SCOBY) to enhance their bioactive properties. To assess the nutritional value of the jackfruit extracts, the phenolic and organic acid compositions were determined. The extracts were also evaluated for their anti-inflammatory properties by measuring their ability to suppress the production of nitric oxide (NO) in response to bacterial lipopolysaccharide (LPS) stimulation in RAW 264.7 macrophage cell line. Furthermore, the inhibitory effects of the extracts on elastase and tyrosinase, enzymes associated with skin aging, were assessed. The fermentation process led to increased phenolic content. This included vitexin, salicylic acid, and benzoic acid. Acetic acid was the most abundant organic acid detected after fermentation, with concentrations ranging from 16.0 to 16.1 mg/mL. Additionally, the fermented extracts exhibited elevated levels of other beneficial organic acids such as citric and quinic acid. The study demonstrated significant reductions in nitrite formation in LPS-stimulated RAW 264.7 cells treated with jackfruit extracts. This finding suggests that the fermented extracts can effectively suppress NO production in a concentration-dependent manner. Among the fermented extracts, JL exhibited the highest inhibition of NO production at a concentration of 19.5%, resulting in a 42.23% reduction. Moreover, fermentation enhanced the inhibitory effects of the jackfruit extracts on elastase and tyrosinase, with inhibition rates ranging from 82.3% to 95.4%. Overall, the findings suggest that fermented jackfruit exhibits increased levels of phytochemical compounds and holds promise as a natural and beneficial ingredient in cosmeceutical products, offering anti-inflammatory and skin-aging benefits.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abd Razak, D. L., Abd Rashid, N. Y., Jamaluddin, A., Sharifudin, S. A., Abd Kahar, A. & Long, K. 2017. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. Journal of the Saudi Society of Agricultural Sciences, 16(2): 127–134.

Anantachoke, N., Duangrat, R., Sutthiphatkul, T., Ochaikul, D. & Mangmool, S. 2023. Kombucha beverages produced from fruits, vegetables, and plants: A review on their pharmacological activities and health benefits. Foods, 12: 9.

Arung, E. T., Shimizu, K. & Kondo, R. 2007. Structure–activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells. Chemistry & Biodiversity, 4(9): 2166–2171.

Aziz, N., Peng, K. S., Mustaffa, R., Abdullah, R. & Hamid, N. S. A. 2017. Effect of yeast and acetic fermentation on phytochemical and antioxidant properties of jackfruit pulp (Artocarpus heterophyllus L.). EDUCATUM Journal of Science, Mathematics and Technology, 4(1): 15–23.

Bae, J. Y. & Park, S. N. 2016. Evaluation of anti-microbial activities of ZnO, citric acid and a mixture of both against Propionibacterium acnes. International Journal of Cosmetic Science, 38(6): 550–557.

Bai, J., Wu, Y., Zhong, K., Xiao, K., Liu, L., Huang, Y., Wang, Z. & Hong, G. A. O. 2018. A comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. Journal of Food Protection, 81(7): 1187–1192.

Baliga, M. S., Shivashankara, A. R., Haniadka, R., Dsouza, J. & Bhat, H. P. 2011. Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): A review. Food Research International, 44(7): 1800–1811.

Banerjee, S., Roy, S., Sabui, R., Bhattacharjee, S. & Nandi, S. 2022. Jackfruit (Artocarpus heterophyllus): An organic cure against diabetes. International Journal of Pharmacy and Pharmaceutical Research, 24(1): 111–122.

Biworo, A., Tanjung, E., Iskandar, Khairina & Suhartono, E. 2015. Antidiabetic and antioxidant activity of jackfruit (Artocarpus heterophyllus) extract. Journal of Medical and Bioengineering, 4(4): 318–323.

Borghi, S. M., Carvalho, T. T., Staurengo-Ferrari, L., Hohmann, M. S. N., Pinge-Filho, P., Casagrande, R. & Verri, W. A. 2013. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. Journal of Natural Products, 76(6): 1141–1146.

Chiocchio, I., Mandrone, M., Sanna, C., Maxia, A., Tacchini, M. & Poli, F. 2018. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Industrial Crops and Products, 122: 498–505.

Choi, H. W., Tian, M., Song, F., Venereau, E., Preti, A., Park, S. W., Hamilton, K., Swapna, G. V. T., Manohar, M., Moreau, M., Agresti, A., Gorzanelli, A., De Marchis, F., Wang, H., Antonyak, M., Micikas, R. J., Gentile, D. R., Cerione, R. A., Schroeder, F. C. & Klessig, D. F. 2015. Aspirin′s active metabolite salicylic acid targets high mobility group box 1 to modulate inflammatory responses. Molecular Medicine, 21(1): 526–535.

Choi, S. Il, Jung, T. D., Cho, B. Y., Choi, S. H., Sim, W. S., Han, X., Lee, S. J., Kim, Y. C. & Lee, O. H. 2019. Anti-photoaging effect of fermented agricultural by-products on ultraviolet B-irradiated hairless mouse skin. International Journal of Molecular Medicine, 44(2): 559–568.

Cialdai, F., Risaliti, C. & Monici, M. 2022. Role of fibroblasts in wound healing and tissue remodelling on Earth and in space. Frontiers in Bioengineering and Biotechnology, 10.

Cosme, P., Rodríguez, A. B., Espino, J. & Garrido, M. 2020. Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9(12): 1263.

de Miranda, J. F., Ruiz, L. F., Silva, C. B., Uekane, T. M., Silva, K. A., Gonzalez, A. G. M., Fernandes, F. F. & Lima, A. R. 2022. Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science, 87(2): 503–527.

de Noronha, M. C., Cardoso, R. R., dos Santos D’Almeida, C. T., Vieira do Carmo, M. A., Azevedo, L., Maltarollo, V. G., Júnior, J. I. R., Eller, M. R., Cameron, L. C., Ferreira, M. S. L. & Barros, F. A. R. de. 2022. Black tea kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chemistry, 384: 132515.

Duan, S., Du, X., Chen, S., Liang, J., Huang, S., Hou, S., Gao, J. & Ding, P. 2020. Effect of vitexin on alleviating liver inflammation in a dextran sulfate sodium (DSS)-induced colitis model. Biomedicine & Pharmacotherapy, 121: 109683.

Ghafari, A. T., Jahidin, A. H., Zakaria, Y. & Hazizul Hasan. 2022. Anti-inflammatory effects of Vitex trifolia leaves hydroalcoholic extract against hydrogen peroxide (H2O2) and lipopolysaccharide (LPS)-induced RAW 264.7 cells. Malaysian Applied Biology, 51(4): 185–200.

Ghimire, B.K., Seo, J.W., Kim, S.H., Lee, J.G., Yu, C.Y. & Chung, I.M. 2021. Influence of harvesting time on phenolic and mineral profiles and their association with the antioxidant and cytotoxic effects of Atractylodes japonica Koidz. Agronomy, 11: 1327.

Hassan, M., Shahzadi, S. & Kloczkowski, A. 2023. Tyrosinase inhibitors naturally present in plants and synthetic modifications of these natural products as anti-melanogenic agents: A Review. Molecules, 28(1): 378.

Jagtap, U. B., Panaskar, S. N. & Bapat, V. A. 2010. Evaluation of antioxidant capacity and phenol content in jackfruit ( Artocarpus heterophyllus lam.) fruit pulp. Plant Foods for Human Nutrition, 65(2): 99–104.

Jakubczyk, K., Kałduńska, J., Kochman, J. & Janda, K. 2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants, 9(5): 447.

Jeong, H. Y., Choi, Y. S., Lee, J. K., Lee, B. J., Kim, W. K. & Kang, H. 2017. Anti-inflammatory activity of citric acid-treated wheat germ extract in lipopolysaccharide-stimulated macrophages. Nutrients, 9(7): 730.

Jin, H. K., Bum, C. L., Jin, H. K., Gwan, S. S., Dong, H. L., Kyung, E. L., Yeo, P. Y. & Hyeong, B. P. 2005. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research, 28(2): 195–202.

Kanteev, M., Goldfeder, M. & Fishman, A. 2015. Structure–function correlations in tyrosinases. Protein Science: A Publication of the Protein Society, 24(9): 1360-1369.

Koh, S. P., Maarof, S., Sew, Y. S., Sabidi, S., Abdullah, R., Mohd Danial, A., Nur Diyana, A. & Mustaffa, R. 2020. Fermented jackfruit leaf beverage offers new affordable and effective diabetes therapy. Food Research, 4: 19–25.

Koh, S. P., Sharifudin, S. A., Abdullah, R., Hamid, N. S. A., Mirad, R. & Mustaffa, R. 2019. Antimicrobial efficacy of fermented mango leaves beverage towards selected foodborne pathogens. Malaysian Journal of Microbiology, 15: 320–326.

Kruk, M., Trząskowska, M., Ścibisz, I. & Pokorski, P. 2021. Application of the “SCOBY” and kombucha tea for the production of fermented milk drinks. Microorganisms, 9(1): 123.

Laavanya, D., Shirkole, S. & Balasubramanian, P. 2021. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner Production, 295: 126454.

Lapenna, D., Ciofani, G., Pierdomenico, S. D., Neri, M., Cuccurullo, C., Giamberardino, M. A. & Cuccurullo, F. 2009. Inhibitory activity of salicylic acid on lipoxygenase-dependent lipid peroxidation. Biochimica et biophysica acta, 1790(1): 25–30.

Lee, H. S., Kim, M. R., Park, Y., Park, H. J., Chang, U. J., Kim, S. Y. & Suh, H. J. 2012. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study. Journal of Medicinal Food, 15(11): 1015.

Leonard, W., Zhang, P., Ying, D., Adhikari, B. & Fang, Z. 2021. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology Advances, 49: 107763.

Lin, J.-Y. & Tang, C.-Y. 2008. Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chemistry, 107(4): 1587–1596.

Liu, A. P. R., Zeng, H., Liu, X., Dou, S., Xu, W., Li, N., Liu, X., Zhang, W., Hu, Z. & Liu, R. 2010. Huang-Lian-Jie-Du-Tang exerts anti-inflammatory effects in rats through inhibition of nitric oxide production and eicosanoid biosynthesis via the lipoxygenase pathway. Journal of Pharmacy and Pharmacology, 61(12): 1699–1707.

Liu, K.L. 2022. Natural products in cosmetics. Natural Product Bioprospect, 12:40.

Liyanaarachchi, G. D., Samarasekera, J. K. R. R., Mahanama, K. R. R. & Hemalal, K. D. P. 2018. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Industrial Crops and Products, 111: 597–605.

Muthamil, S., Balasubramaniam, B., Balamurugan, K. & Pandian, S. K. 2018. Synergistic effect of quinic acid derived from Syzygium cumini and undecanoic acid against Candida spp. biofilm and virulence. Frontiers in Microbiology, 9: 2835.

Nagoba, B. S., Selkar, S. P., Wadher, B. J. & Gandhi, R. C. 2013. Acetic acid treatment of pseudomonal wound infections - A review. In Journal of Infection and Public Health , 6(6): 410–415.

Nagoba, B., Davane, M., Gandhi, R., Wadher, B., Suryawanshi, N. & Selkar, S. 2017. Treatment of skin and soft tissue infections caused by Pseudomonas aeruginosa—A review of our experiences with citric acid over the past 20 years. Wound Medicine, 19: 5–9.

Aziz, N., Peng, K.S., Abdullah, R., Hamid, N.A. & Mustaffa, R. 2018. The phytochemical and antioxidant characteristics of fermented jackfruit (Artocarpus heterophyllus L.) leaves using single and mixed starter culture. Journal of Food Science and Engineering, 8(1): 55-60.

Omar, H. S., El-Beshbishy, H. A., Moussa, Z., Taha, K. F. & Singab, A. N. B. 2011. Antioxidant activity of Artocarpus heterophyllus Lam. (Jackfruit) leaf extracts: remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats. The Scientific World Journal, 11: 788–800.

Ong, B. T., Nazimah, S. A. H., Osman, A., Quek, S. Y., Voon, Y. Y., Hashim, D. M., Chew, P. M. & Kong, Y. W. 2006. Chemical and flavour changes in jackfruit (Artocarpus heterophyllus Lam.) cultivar J3 during ripening. Postharvest Biology and Technology, 40(3): 279–286.

Pluemsamran, T., Onkoksoong, T. & Panich, U. 2012. Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT Cells. Photochemistry and Photobiology, 88(4): 961–968.

Ranjan, R., Kishore, K., TJ, S., Jha, A. K., Ojha, B. K., Kumar, S. & Kumar, R. 2023. Nutraceutical potential of vitexin: A flavone glycoside. The Journal of Phytopharmacology, 12(1): 44–50.

Rayendra, R., Wientarsih, I., Priosoeryanto, B. P. & Gunawan, H. 2016. Potency of Jack Fruit Leaves as Tyrosinase Inhibitor. International Journal of Sciences: Basic and Applied Research, 30(4): 351–357.

Ryu, J.-H., Ahn, H., Kim, J. Y. & Kim, Y.-K. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytotherapy Research, 17(5): 485–489.

Shao, W. H., Chen, B. Y., Cheng, X. R., Yuan, H., Chen, H., Chang, W. L., Ye, J., Lin, S., Sun, Q. Y. & Zhang, W. D. 2015. Synthesis and evaluation of new α-methylene-γ-lactone carbamates with NO production inhibitory effects in lipopolysaccharide-induced RAW 264.7 macrophages. European Journal of Medicinal Chemistry, 93: 274–280.

Singh, D. P., Moore, C. A., Gilliland, A. & Carr, J. P. 2004. Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 5(1): 57–63.

Sornkayasit, K., Jumnainsong, A., Srijampa, S., Ruknarong, L., Buddhisa, S., Thanonkeo, P., Sutthanut, K., Thukhammee, W., Wattanathorn, J., Leelayuwat, C. & Tippayawat, P. 2024. Immunomodulatory potentials of modified kombucha with pineapple by-products in aging: An ex vivo study. Journal of Functional Foods, 112: 105933.

Srinivasan, M., Sudheer, A. R. & Menon, V. P. 2007. Ferulic acid: Therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition, 40(2): 92.

Sudip, S. 2024. Organic Cosmetic Market: Organic Cosmetic Market Forecast by Skin Care and Hair Care for 2024 to 2034. Future Market Insights, United States.

Suganya, P., Jeyaprakash, K., Mallavarapu, G. R. & Murugan, R. 2015. Comparison of the chemical composition, tyrosinase inhibitory and anti-inflammatory activities of the essential oils of Pogostemon plectranthoides from India. Industrial Crops and Products, 69: 300–307.

Swami, S. B. & Kalse, S. B. 2019. Jackfruit (Artocarpus heterophyllus): Biodiversity, Nutritional Contents, and Health. Reference Series in Phytochemistry, 2237–2259.

Taciak, B., Białasek, M., Braniewska, A., Sas, Z., Sawicka, P., Kiraga, Ł., Rygiel, T. & Król, M. 2018. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS ONE, 13.

Terefe, E. M., Okalebo, F. A., Derese, S., Muriuki, J. & Batiha, G. E. S. 2021. In vitro cytotoxicity and anti-HIV activity of crude extracts of Croton macrostachyus, Croton megalocarpus and Croton dichogamus. Journal of Experimental Pharmacology, 13: 971.

Thapa, N., Thapa, P., Bhandari, J., Niraula, P., Shrestha, N. & Shrestha, B. G. 2016. Study of phytochemical, antioxidant and antimicrobial activity of Artocarpus heterophyllus. Nepal Journal of Biotechnology, 4(1): 47–53.

Tjahjono, Y., Karnati, S., Foe, K., Anggara, E., Gunawan, Y. N., Wijaya, H., Steven, Suyono, H., Esar, S. Y., Hadinugroho, W., Wihadmadyatami, H., Ergün, S., Widharna, R. M. & Caroline. 2021. Anti-inflammatory activity of 2-((3-(chloromethyl)benzoyl) oxy) benzoic acid in LPS-induced rat model. Prostaglandins & Other Lipid Mediators, 154.

Tu, Y. Y., Xia, H. L. & Watanabe, N. 2005. Changes in catechins during the fermentation of green tea. Applied Biochemistry and Microbiology, 41(6): 574–577.

Vázquez-González, Y., Ragazzo-Sánchez, J. A. & Calderón-Santoyo, M. 2020. Characterization and antifungal activity of jackfruit (Artocarpus heterophyllus Lam.) leaf extract obtained using conventional and emerging technologies. Food Chemistry, 330: 127211.

Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P. & Taillandier, P. 2018. Understanding kombucha tea fermentation: A Review. Journal of Food Science, 83(3): 580–588.

Wang, X. L., Di, X. X., Shen, T., Wang, S. Q. & Wang, X. N. 2017. New phenolic compounds from the leaves of Artocarpus heterophyllus. Chinese Chemical Letters, 28(1): 37–40.

Wen, L., Zhao, Y., Jiang, Y., Yu, L., Zeng, X., Yang, J., Tian, M., Liu, H. & Yang, B. 2017. Identification of a flavonoid C-glycoside as potent antioxidant. Free Radical Biology and Medicine, 110: 92–101.

Wójciak, M., Ziemlewska, A., Zagórska-Dziok, M., Nizioł-Łukaszewska, Z., Szczepanek, D., Oniszczuk, T. & Sowa, I. 2023. Anti-inflammatory and protective effects of water extract and bioferment from Sambucus nigra fruit in LPS-induced human skin fibroblasts. International Journal of Molecular Sciences, 24(12): 10286.

Xie, G., Ye, M., Wang, Y., Ni, Y., Su, M., Huang, H., Qiu, M., Zhao, A., Zheng, X., Chen, T. & Jia, W. 2009. Characterization of pu-erh tea using chemical and metabolic profiling approaches. Journal of Agricultural and Food Chemistry, 57(8): 3046–3054.

Yacob, A. 2022. Webinar Series On Tropical Fruits - Jackfruit. https://www.itfnet.org/v1/2022/07/tfnet-kickstarts-international-webinar-series-on-minor-tropical-fruits-with-jackfruit (accessed 04.12.24)

Zhu, Q. Y., Zhang, A., Tsang, D., Huang, Y. & Chen, Z. Y. 1997. Stability of Green Tea Catechins. Journal of Agricultural and Food Chemistry, 45(12): 4624–4628.

Ziemlewska, A., Nizioł-Łukaszewska, Z., Bujak, T., Zagórska-Dziok, M., Wójciak, M. & Sowa, I. 2021. Effect of fermentation time on the content of bioactive compounds with cosmetic and dermatological properties in Kombucha Yerba Mate extracts. Scientific Reports 11(1): 1–15.

Zofia, N. Ł., Aleksandra, Z., Tomasz, B., Martyna, Z. D., Magdalena, Z., Zofia, H. B. & Tomasz, W. 2020. Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules, 25(22): 5394.

Published

27-03-2025

How to Cite

Aziz, N., Peng, K. S. ., & Md Nor, N. S. (2025). Enhancing Jackfruit’s Bioactive Properties Through SCOBY Fermentation: Implications For Cosmeceuticals. Malaysian Applied Biology, 54(1), 1–11. https://doi.org/10.55230/mabjournal.v54i1.3190

Issue

Section

Research Articles

Funding data

Most read articles by the same author(s)