Phaleria macrocarpa Fruit Protein Aqueous Extract Affects Viral Entry, Virucidal Activity, and Progeny Release
Keywords:
Early replication stage, Phaleria macrocarpa fruit, progeny release inhibition, virucidal activityAbstract
Presence of acyclovir (ACV) resistant virus posed a major problem in treating virus infection. Alternative treatment with the ability to encounter infection of acyclovir-resistant virus is thus needed and possibly with a different mode of action from ACV. Hence, this study evaluates the antiviral effect of Phaleria macrocarpa (Scheff.) Boerl fruit protein aqueous extract (PMFPAE) against three different strains of human herpesvirus type-1 (HHV-1) including a clinical strain, a less pathogenic strain (KOS-1), and acyclovir (ACV) resistant mutant (UKM-1). PMFPAE displayed antiviral activity towards all the HHV-1 strains when post-treated with high selective indices (SIs) of 80.6, 50, and 35, respectively. Plaque reduction percentages were reduced in attachment and penetration assays following treatment with PMFPAE indicating the ability to deactivate the early phases of the HHV-1 replication cycle. The virucidal activity was also noted following treatment of the virus with PMFPAE and this is supported by damages to the virus envelope as observed by transmission electron microscopy (TEM). Incubation of virus-treated cells with PMFPAE for 24 hr, reduced progeny release in a dose-dependent manner. The study confirms the antiviral mode of action of P. macrocarpa fruit against HHV-1 strains and the ACV-mutant strain includes inhibition during virus entry represented as the early stages of viral replication, virucidal activity, and interfering with progeny release. PMFPAE mode of action is hence different from ACV and worthy for the development of future antiviral drugs.
Downloads
Metrics
References
Alara, O.R., Abdul Mudalip, S.K. & Olalere, O.A. 2017. Optimization of mangiferin extracted from Phaleria macrocarpa fruits using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 5: 82-87. DOI: https://doi.org/10.1016/j.jarmap.2017.02.002
Altaf, R., Asmawi. M.Z., Dewa, A., Sadikun, A. & Umar, M.I. 2013. Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacognosy Review, 7: 73-80. DOI: https://doi.org/10.4103/0973-7847.112853
Álvarez, D.M., Castillo, E., Duarte, L.F., Arriagada, J., Corrales, N., Farías, M.A. & González, P.A. 2020. Current antivirals and novel botanical molecules interfering with herpes simplex virus infection. Frontiers in Microbiology, 11: 139. DOI: https://doi.org/10.3389/fmicb.2020.00139
Andrei, G. & Snoeck, R. 2013. Herpes simplex virus drug-resistance: New mutations and insights. Current Opinion in Infectious Disease, 26: 551-560. DOI: https://doi.org/10.1097/QCO.0000000000000015
Brezáni, V., Leláková, V., Hassan, S., Berchová-Bímová, K., Nový, P., Klouček, P., Maršík, P., Dall'Acqua, S., Hošek, J. & Šmejkal, K. 2018. Anti-Infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses, 10: 360. DOI: https://doi.org/10.3390/v10070360
Brown, J.C. & Newcomb, W.W. 2011. Herpesvirus capsid assembly: Insights from structural analysis. Current Opinion in Virology, 1: 142-149. DOI: https://doi.org/10.1016/j.coviro.2011.06.003
Chattopadhyay, D., Chawla-Sarkar, M., Chatterjee, T., Dey, R.S., Bag, P., Chakraborti. S. & Khan, M.T.H. 2009. Recent advancements for the evaluation of antiviral activities of natural products. New Biotechnology, 25: 347-368. DOI: https://doi.org/10.1016/j.nbt.2009.03.007
Crimi, S., Fiorillo, L., Bianchi, A., D'Amico, C., Amoroso, G., Gorassini, F.& Cicciù, M. 2019. Herpes virus, oral clinical signs and QoL: Systematic review of recent data. Viruses, 11: 463. DOI: https://doi.org/10.3390/v11050463
Diamond, G., Molchanova, N., Herlan, C., Fortkort, J.A., Lin, J.S., Figgins, E. & Barron, A.E. 2021. Potent antiviral activity against HSV-1 and SARS-CoV-2 by antimicrobial peptoids. Pharmaceuticals, 14(4): 304. https://doi.org/10.3390/ph14040304 DOI: https://doi.org/10.3390/ph14040304
Du, S., Liu, H., Lei, T., Xie, X., Wang, H., He, X. & Wang, Y. 2018. Mangiferin: An effective therapeutic agent against several disorders. Molecular Medicine Reports, 18(6): 4775-4786. DOI: https://doi.org/10.3892/mmr.2018.9529
Fayyad, A., Ibrahim, N. & Yaacob, W.A. 2013. In vitro virucidal activity of hexane fraction of Marrubium vulgare against type 1 herpes simplex virus. American Journal of Drug Discovery and Development, 3: 84-94. DOI: https://doi.org/10.3923/ajdd.2013.84.94
Frobert, E., Burrel, S., Ducastelle-Lepretre, S., Billaud, G., Ader, F., Casalegno, J.S., Nave, V., Boutolleau, D., Michallet, M., Lina, B. & Morfin, F. 2014. Resistance of herpes simplex viruses to acyclovir: An update from a ten-year survey in France. Antiviral Research, 111: 36-41. DOI: https://doi.org/10.1016/j.antiviral.2014.08.013
Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V. & Galdiero, M. 2011. Silver nanoparticles as potential antiviral agents. Molecules, 16(10): 8894-8918. DOI: https://doi.org/10.3390/molecules16108894
Habboo, M.D., Md Nor, N.S. & Ibrahim, N. 2020. Orthosiphon stamineus water extracts inhibit human herpes virus 1 KOS-1 and acyclovir-resistant strains by virucidal activity and suppressing virus early infection. Malaysian Journal of Microbiology, 16: 285-293. DOI: https://doi.org/10.21161/mjm.190568
Hussin, A., Md Nor, N.S., Bahtiar, A.A., Yamin, B.M. & Ibrahim, N. 2022. Goniothalamin berkesan secara in vitro terhadap virus herpes manusia jenis 1 rintang-Acyclovir. Malaysian Applied Biology, 51(5): 261-269. DOI: https://doi.org/10.55230/mabjournal.v51i5.2369
Hussin, A., Nor, N.S.M. & Ibrahim, N. 2013. Phenotypic and genotypic characterization of induced acyclovir-resistant clinical isolates of herpes simplex virus type 1. Antiviral Research, 100(2): 306-313. DOI: https://doi.org/10.1016/j.antiviral.2013.09.008
Iberahim, R., Nor, N. S. M., Yaacob, W. A. & Ibrahim, N. 2018. Eleusine indica Inhibits early and late phases of herpes simplex virus type 1 replication cycle and reduces progeny infectivity. Sains Malaysiana, 47(7): 1431-1438. DOI: https://doi.org/10.17576/jsm-2018-4707-10
Iberahim, R., Yaacob, W.A. & Ibrahim, N. 2015. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau). AIP Conference Proceedings, 1678: 030013. DOI: https://doi.org/10.1063/1.4931234
Ismaeel M, Dyari, H.R.E., Nor, N.S.M, Yaacob, W.A. & Ibrahim, N. 2018a. Anti-human herpesvirus type-1 activity of Phaleria macrocarpa fruits methanol extract and fractions. Malaysian Applied Biology, 47: 31-40.
Ismaeel, M.Y.Y., Dyari, H.R.E. & Ibrahim, N. 2022. Protein from Phaleria macrocarpa fruit aqueous extract inhibits early and late replication phases of human herpes virus type-1. Pharmacognosy Journal, 14: 39-45. DOI: https://doi.org/10.5530/pj.2022.14.6
Ismaeel, M.Y.Y., Dyari, H.R.E., Yaacob, W.A. & Ibrahim, N. 2018b. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1. AIP Conference Proceedings, 1940: 020076. DOI: https://doi.org/10.1063/1.5027991
Ismaeel, M.Y.Y., Yaacob, W.A., Tahir, M.M. & Ibrahim N. 2015 Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits. AIP Conference Proceedings, 1678: 030012. DOI: https://doi.org/10.1063/1.4931233
Kłysik, K., Pietraszek, A., Karewicz, A., & Nowakowska, M. 2018. Acyclovir in the treatment of herpes viruses - a review. Current Medicinal Chemistry, 25: 1-18.
Lin, L.T., Hsu, W.C. & Lin, C.C. 2014. Antiviral natural products and herbal medicines. Journal of Traditional Complementary Medicine, 4: 24-35. DOI: https://doi.org/10.4103/2225-4110.124335
Ripim, N.S.M., Nor, N.S.M. 2018. Virucidal properties of Orthosiphon stamineus against herpes simplex virus type 1 (HSV-1). Malaysian Journal of Microbiology, 14: 570-578. DOI: https://doi.org/10.21161/mjm.1461816
Saddi, M., Sanna, A., Cottiglia, F., Chisu, L., Casu, L., Bonsignore, L. & De Logu, A. 2007. Antiherpevirus activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in Vero cells. Annals of Clinical Microbiology and Antimicrobials, 6(1): 1-7. DOI: https://doi.org/10.1186/1476-0711-6-10
Schaffer, P.A., Aron, G.M., Biswal, N. & Benyesh-Melnick, M. 1973. Temperature-sensitive mutants of herpes simplex virus type 1: Isolation, complementation and partial characterization. Virology, 52: 57-71. DOI: https://doi.org/10.1016/0042-6822(73)90398-X
Souza, T. M. L., De Souza, M. C. B. V., Ferreira, V. F., Canuto, C. V. B. S., Marques, I. P., Fontes, C. F. L. & Frugulhetti, I. C. 2008. Inhibition of HSV-1 replication and HSV DNA polymerase by the chloroxoquinolinic ribonucleoside 6-chloro-1, 4-dihydro-4-oxo-1-(β-d-ribofuranosyl) quinoline-3-carboxylic acid and its aglycone. Antiviral Research, 77(1): 20-27. DOI: https://doi.org/10.1016/j.antiviral.2007.08.011
Zhou, Z.H., Dougherty, M., Jakana, J., He, J., Rixon, F.J. & Chiu, W. 2000. Seeing the herpesvirus capsid at 8.5 Å. Science, 288: 877-880. DOI: https://doi.org/10.1126/science.288.5467.877
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/2019/ WAB11/UKM/02/1 -
Universiti Kebangsaan Malaysia
Grant numbers GP-K006401