Effect of Cooking Method on The Physicochemical Properties of Tomatoes

https://doi.org/10.55230/mabjournal.v53i4.3051

Authors

  • Arnida Hani Teh Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovation Center for Confectionary Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Teo Wan Ting Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Keywords:

Antioxidant, cooking method, physicochemical properties, tomatoes

Abstract

The cooking process influences the chemical and physical changes in food due to the increase in temperature. It also alters the appearance, taste, color, and texture of food either positively or negatively. Therefore, this study was done to determine the effect of cooking methods on the physicochemical properties and the retention of antioxidant content in tomatoes. The cooking conditions used were boiling at 100°C for 6 min, frying at 230°C for 4.5 min, baking at 175°C for 25 min, and cooking with an air fryer at 200°C for 15 min. Physicochemical characteristics (cooking loss, ash, crude fiber, firmness, color, pH value & total soluble solids) were measured. Antioxidant properties (antioxidant activity, total phenolic content, lycopene content, and ascorbic acid content) were also determined. There were significant differences (p<0.05) for ash, color, pH value, and total soluble solid, while no significant difference (p>0.05) was observed for cooking loss, crude fiber, and firmness. Different cooking methods had shown a significant difference (p<0.05) against all tests for determining antioxidant activity, total phenolic content, lycopene content, and ascorbic acid content. Air frying is the best cooking method to preserve the physicochemical properties of tomatoes, compared to other methods employed. Hence, it can be concluded that different cooking methods have different effects on the physicochemical properties of tomatoes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdalla, M. & Yousef, M. 2016. Effect of cooking on nutritive value of Jew's mallow (Corchorus olitorius L.) and mallow (Malva parviflora L.) leaves. Alexandria Journal of Food Science and Technology, 13(2): 1-10. DOI: https://doi.org/10.12816/0038408

Arkoub-Djermoune, L., Bellili, S., Khenouce, L., Benmeziane, F., Madani, K. & Boulekbache-Makhlouf, L. 2019. Effect of domestic cooking on physicochemical parameters, phytochemicals and antioxidant properties of algerian tomato (Solanum Lycopersicum L. var. Marmande). Journal of Food Technology Research, 6(1): 1-17.

Arkoub-Djermoune, L., Boulekbache-Makhlouf, L., Zeghichi-Hamri, S., Bellili, S., Boukhalfa, F. & Madani, K. 2016. Influence of the thermal processing on the physicochemical properties and the antioxidant activity of a solanaceae vegetable: Eggplant. Journal of Food Quality, 39(3): 181-191. DOI: https://doi.org/10.1111/jfq.12192

Armesto, J., Gómez-Limia, L., Carballo, J. & Martínez, S. 2017. Impact of vacuum cooking and boiling, and refrigerated storage on the quality of galega kale (Brassica oleracea var. acephala cv. Galega). Food Science and Technology, 79: 267-277. DOI: https://doi.org/10.1016/j.lwt.2017.01.050

Azali, N.Z., Hashim, H. & Teh, A.H. 2022. Effects of temperature and polyethylene plastic packaging on physicochemical changes and antioxidant properties of tomato during storage. Malaysian Applied Biology, 51(5): 211-219. DOI: https://doi.org/10.55230/mabjournal.v51i5.2341

Barbagallo, R., Chisari, M. & Spagna, G. 2009. Enzymatic browning and softening in vegetable crops: Studies and experiences. Italian Journal of Food Science 21(1): 4-17.

Bellili, S., Khenouce, L., Benmeziane, F. & Madani, K. 2019. Effect of domestic cooking on physicochemical parameters, phytochemicals and antioxidant properties of Algerian tomato. Journal of Food Technology, 6(1): 1-17. DOI: https://doi.org/10.18488/journal.58.2019.61.1.17

Beltrán Sanahuja, A., De Pablo Gallego, S.L., Maestre Pérez, S.E., Valdés García, A. & Prats Moya, M.S. 2019. Influence of cooking and ingredients on the antioxidant activity, phenolic content and volatile profile of different variants of the Mediterranean typical tomato Sofrito. Antioxidants, 8(11): 551-559. DOI: https://doi.org/10.3390/antiox8110551

Berinyuy, W.H., Houketchang, S.C.N., Nyemb, G.M., Mbite, A.T.N. & Ngangoum, E.S. 2018. Effect of Lycopersicon esculentum boiling on the phenolic content and antioxidant activity of tomato fruits. Journal of Food Stability, 1(1): 28-35. DOI: https://doi.org/10.36400/J.Food.Stab.1.1.2018-0003

Cejpek, K. 2012. Determination of carbohydrates in foodstuff (LC/RID method). Analysis of food and natural products laboratory exercise. Institute of Chemical Technology, Prague.

Chuah, A.M., Lee, Y.C., Yamaguchi, T., Takamura, H., Yin, L.J. & Matoba, T. 2008. Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111(1): 20-28. DOI: https://doi.org/10.1016/j.foodchem.2008.03.022

De Santiago, E., Domínguez-Fernández, M., Cid, C. & De Peña, M.P. 2018. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chemistry, 240: 1055-1062. DOI: https://doi.org/10.1016/j.foodchem.2017.08.039

Delgado-Andrade, C., Seiquer, I., Haro, A., Castellano, R., & Navarro, M.P. 2010. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chemistry, 122(1): 145-153. DOI: https://doi.org/10.1016/j.foodchem.2010.02.031

dos Reis, R.C., Devilla, I.A., Correa, P.C., de Oliveira, G.H.H., & de Castro, V.C. 2015. Postharvest conservation of cherry tomato with edible coating. African Journal of Agricultural Research, 10(11):1164-1170.

Erickson, M.D., Yevtushenko, D.P., & Lu, Z.X. 2023. Oxidation and thermal degradation of oil during frying: A review of natural antioxidant use. Food Reviews International, 39(7): 4665-4696. DOI: https://doi.org/10.1080/87559129.2022.2039689

Ghidurus, M., Turtoi, M., Boskou, G., Niculita, P. & Stan, V. 2010. Nutritional and health aspects related to frying (I). Romanian Biotechnological Letters, 15(6): 5675-5682.

Gök, V. & Bor, Y. 2016. Effect of marination with fruit and vegetable juice on some quality characteristics of turkey breast meat. Brazilian Journal of Poultry Science, 18: 481-488. DOI: https://doi.org/10.1590/1806-9061-2016-0225

Huang, Y., Lu, R., Hu, D. & Chen, K. 2018. Quality assessment of tomato fruit by optical absorption and scattering properties. Postharvest Biology and Technology, 143: 78-85. DOI: https://doi.org/10.1016/j.postharvbio.2018.04.016

Jiratanan, T. & Liu, R. H. 2004. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 52(9): 2659-2670. DOI: https://doi.org/10.1021/jf034861d

Jürkenbeck, K., Spiller, A. & Meyerding, S. G. 2020. Tomato attributes and consumer preferences-a consumer segmentation approach. British Food Journal, 122(1): 328-344. DOI: https://doi.org/10.1108/BFJ-09-2018-0628

Kala, A. & Prakash, J. 2004. Nutrient composition and sensory profile of differently cooked green leafy vegetables. International Journal of Food Properties, 7(3): 659-669. DOI: https://doi.org/10.1081/JFP-200033079

Kim, S.S., Lee, Y.E., Kim, C.H., Min, J.S., Yim, D.G., & Jo, C. (2022). Determining the optimal cooking time for cooking loss, shear force, and off-odor reduction of pork large intestines. Food Science of Animal Resources, 42(2): 332. DOI: https://doi.org/10.5851/kosfa.2022.e6

Lee, S., Choi, Y., Jeong, H.S., Lee, J. & Sung, J. 2018. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Science and Biotechnology, 27: 333-342. DOI: https://doi.org/10.1007/s10068-017-0281-1

Lewicki, P.P. 1998. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. International Journal of Food Properties, 1(1): 1-22. DOI: https://doi.org/10.1080/10942919809524561

Lopes, A.F., Alfaia, C.M., Partidário, A.M., Lemos, J.P. & Prates, J.A. 2015. Influence of household cooking methods on amino acids and minerals of Barrosã-PDO veal. Meat Science, 99: 38-43. DOI: https://doi.org/10.1016/j.meatsci.2014.08.012

Mahieddine, B., Amina, B., Faouzi, S.M., Sana, B. & Wided, D. 2018. Effects of microwave heating on the antioxidant activities of tomato (Solanum lycopersicum). Annals of Agricultural, Sciences 63(2): 135-139. DOI: https://doi.org/10.1016/j.aoas.2018.09.001

Malaysian Food Composition Database (MyFCD). 2023. URL https://myfcd.moh.gov.my/ (accessed 12.20.23)

Manjula, B., Aruna, R., Pooja, M., Leelavathi, N., Rekha, A. & Shiny, G. 2023. Value added products from tomato: Quality analysis of different proximate, physical, hydrational and sensory analysis. The Pharma Innovation Journal, 12(1): 2831- 2837.

Maqbool, N., Sofi, S.A., Makroo, H.A., Mir, S.A., Majid, D. & Dar, B. 2021. Cooking methods affect eating quality, bio-functional components, antinutritional compounds and sensory attributes of selected vegetables. Italian Journal of Food Science, 33(1): 150-162. DOI: https://doi.org/10.15586/ijfs.v33iSP1.2092

Martínez, S., Pérez, N., Carballo, J. & Franco, I. 2013. Effect of blanching methods and frozen storage on some quality parameters of turnip greens ("Grelos"). Food Science and Technology, 51(1): 383-392. DOI: https://doi.org/10.1016/j.lwt.2012.09.020

Martínez-Hernández, G.B., Boluda-Aguilar, M., Taboada-Rodríguez, A., Soto-Jover, S., Marín-Iniesta, F. & López-Gómez, A. 2016. Processing, packaging, and storage of tomato products: influence on the lycopene content. Food Engineering Reviews, 8: 52-75. DOI: https://doi.org/10.1007/s12393-015-9113-3

Mayeaux, M., Xu, Z., King, J. & Prinyawiwatkul, W. 2006. Effects of cooking conditions on the lycopene content in tomatoes. Journal of Food Science, 71(8): 461-464. DOI: https://doi.org/10.1111/j.1750-3841.2006.00163.x

Melini, V., Panfili, G., Fratianni, A. & Acquistucci, R. 2019. Bioactive compounds in rice on Italian market: Pigmented varieties as a source of carotenoids, total phenolic compounds and anthocyanins, before and after cooking. Food Chemistry, 277: 119-127. DOI: https://doi.org/10.1016/j.foodchem.2018.10.053

Nartea, A., Falcone, P. M., Torri, L., Ghanbarzadeh, B., Frega, N. G. & Pacetti, D. 2021. Modeling softening kinetics at cellular scale and phytochemicals extractability in cauliflower under different cooking treatments. Foods, 10(9): 19-69. DOI: https://doi.org/10.3390/foods10091969

Nasir, W.N.H.W., Ibrahim, N.N.A., Hao, W.K., Sajak, A.A., Sofian-Seng, N.S., Mustapha, W.A.W. & Rahman, H.A. (2021). Effects of different drying methods and solvents on biological activities of Curcuma aeruginosa leaves extract. Sains Malaysiana, 50(8): 2207-2218. DOI: https://doi.org/10.17576/jsm-2021-5008-06

Nemeskéri, E., Neményi, A., Bőcs, A., Pék, Z. & Helyes, L. 2019. Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water, 11(3): 586. DOI: https://doi.org/10.3390/w11030586

Nicholas, P., Pittson, R., & Hart, J. P. 2018. Development of a simple, low cost chronoamperometric assay for fructose based on a commercial graphite-nanoparticle modified screen-printed carbon electrode. Food chemistry, 241, 122-126. DOI: https://doi.org/10.1016/j.foodchem.2017.08.077

Nkolisa, N., Magwaza, L.S., Workneh, T.S., Chimphango, A. & Sithole, N. J. 2019. Postharvest quality and bioactive properties of tomatoes (Solanum lycopersicum) stored in a low-cost and energy-free evaporative cooling system. Heliyon, 5(8): 22-66. DOI: https://doi.org/10.1016/j.heliyon.2019.e02266

Ochida, C.O., Itodo, A.U. & Nwanganga, P.A. 2018. A review on postharvest storage, processing and preservation of tomatoes (Lycopersicon esculentum Mill). Asian Food Science Journal, 6(2): 1-10. DOI: https://doi.org/10.9734/AFSJ/2019/44518

Ogofure, A. & Ologbosere, A. 2023. Microbiological and proximate properties of healthy and diseased/spoilt tomatoes (Lycopersicum esculentum L.) sold in open markets in Benin city: Public health implications. Journal of Materials and Environmental Science, 14 (4): 395-409

Olveira-Bouzas, V., Pita-Calvo, C., Lourdes Vázquez-Odériz, M., & Ángeles Romero- Rodríguez, M. 2021. Evaluation of a modified atmosphere packaging system in pallets to extend the shelf-life of the stored tomato at cooling temperature. Food Chemistry, 364(2021): 1-10. DOI: https://doi.org/10.1016/j.foodchem.2021.130309

Palermo, M., Pellegrini, N. & Fogliano, V. 2014. The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94(6): 1057-1070. DOI: https://doi.org/10.1002/jsfa.6478

Podsędek, A., Sosnowska, D., Redzynia, M. & Koziołkiewicz, M. 2008. Effect of domestic cooking on the red cabbage hydrophilic antioxidants. International Journal of Food Science and Technology, 43(10): 1770-1777. DOI: https://doi.org/10.1111/j.1365-2621.2007.01697.x

Poojary, M.M. & Lund, M.N. 2022. Chemical stability of proteins in foods: Oxidation and the Maillard reaction. Annual Review of Food Science and Technology, 13: 35-58. DOI: https://doi.org/10.1146/annurev-food-052720-104513

Razzak, A., Mahjabin, T., Khan, M.R.M., Hossain, M., Sadia, U. & Zzaman, W. 2023. Effect of cooking methods on the nutritional quality of selected vegetables at Sylhet city. Heliyon, 9(11): 21-30. DOI: https://doi.org/10.1016/j.heliyon.2023.e21709

Rodríguez, R., Jimenez, A., Fernández-Bolanos, J., Guillen, R. & Heredia, A. 2006. Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science & Technology, 17(1): 3-15. DOI: https://doi.org/10.1016/j.tifs.2005.10.002

Ruiz-Rodriguez, A., Marín, F. R., Ocaña, A. & Soler-Rivas, C. 2008. Effect of domestic processing on bioactive compounds. Phytochemistry Reviews, 7: 345-384. DOI: https://doi.org/10.1007/s11101-007-9073-1

Sahlin, E., Savage, G. & Lister, C. 2004. Investigation of the antioxidant properties of tomatoes after processing. Journal of Food Composition and Analysis, 17(5): 635-647. DOI: https://doi.org/10.1016/j.jfca.2003.10.003

Sánchez-Rangel, J.C., Benavides, J., Heredia, J.B., Cisneros-Zevallos, L. & Jacobo- Velázquez, D.A. 2013. The Folin-Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical methods, 5(21): 5990-5999. DOI: https://doi.org/10.1039/c3ay41125g

Thanuja, S., Sivakanthan, S. & Vasantharuba, S.V. 2019. Effect of different cooking methods on antioxidant properties of tomato (Lycopersicon esculentum). Ceylon Journal of Science, 48(1): 85-90. DOI: https://doi.org/10.4038/cjs.v48i1.7592

Vujadinović, D.P., Grujić, R.D., Tomović, V.M., Vukić, M.S., & Jokanović, M.R. 2014. Cook Loss as a Function of Meat Heat Treatment and Regime. Quality of Life (Banja Luka)-Apeiron, 10(3-4). DOI: https://doi.org/10.7251/QOL1402081V

Wachtel-Galor, S., Wong, K.W. & Benzie, I.F. 2008. The effect of cooking on Brassica vegetables. Food Chemistry, 110(3): 706-710. DOI: https://doi.org/10.1016/j.foodchem.2008.02.056

Wennberg, M., Engqvist, G. & Nyman, E.L. 2003. Effects of boiling on dietary fiber components in fresh and stored white cabbage (Brassica oleracea var. capitata). Journal of Food Science, 68(5): 1615-1621. DOI: https://doi.org/10.1111/j.1365-2621.2003.tb12301.x

Zhao, C., Liu, Y., Lai, S., Cao, H., Guan, Y., San Cheang, W., Liu, B., Zhao, K., Miao, S. & Riviere, C. 2019. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends in Food Science & Technology, 85: 55-66. DOI: https://doi.org/10.1016/j.tifs.2019.01.004

Published

27-10-2024

How to Cite

Teh, A. H., & Ting, T. W. (2024). Effect of Cooking Method on The Physicochemical Properties of Tomatoes. Malaysian Applied Biology, 53(4), 17–26. https://doi.org/10.55230/mabjournal.v53i4.3051