Effects of Temperature and Polyethylene Plastic Packaging on Physicochemical Changes and Antioxidant Properties of Tomato During Storage



  • Nuraina Zahira Azali Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Haslaniza Hashim Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Arnida Hani Teh Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovation Center for Confectionary Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia


antioxidants, packaging, physicochemical, storage temperature, tomato


This study determined the effects of different storage temperatures and packaging on the physicochemical changes and antioxidant properties of tomatoes during storage in two tomato species (Lycopersicon esculentum Mill. tomato and Solanum lycopersicum var. Cerasiforme cherry tomato). Samples underwent storage process with different temperatures of 4 °C and room temperature (25 °C); with or without polyethylene plastic packaging. The physicochemical changes studied include weight, color, firmness, and total soluble solids (TSS), while the antioxidant properties studied include lycopene content, ascorbic acid content, total phenolic content (TPC), and free radical scavenging activity (2,2-Diphenyl-1-picrylhydrazyl, DPPH), measured at three-time points (day 1, 8, 15). Based on the two-way ANOVA, both temperature and packaging factors play an important role in the physicochemical changes and antioxidant properties of both tomato species. For tomatoes, the temperature had a significant (p<0.05) effect on all measurements, except for redness value (a*) and ascorbic acid content (p>0.05). While packaging had a significant (p<0.05) effect on all measurements, excluding the ascorbic acid and TPC (p>0.05). For cherry tomatoes, the temperature had a significant (p<0.05) effect on all measurements, not including ascorbic acid content (p>0.05). Whereas packaging had a significant (p<0.05) effect on all measurements, except for TPC (p>0.05). For both samples studied, temperature and packaging factors had significant interactions (p<0.05) on all measurements, except for ascorbic acid and TPC (p>0.05). In conclusion, storage at a low temperature of 4 °C with the packaging was found to be able to maintain the physicochemical and antioxidant properties in both tomato species.


Download data is not yet available.


Metrics Loading ...


l-Dairi, M., Pathare, P.B. & Al-Yahyai, R. 2021. Effect of postharvest transport and storage on color and firmness quality of tomato. Horticulturae, 7(7):163. DOI: https://doi.org/10.3390/horticulturae7070163

Asgar, A. 2020. Effect of storage temperature and type of packaging on physical and chemical quality of carrot. IOP Conference Series: Earth and Environmental Science, 443(1). DOI: https://doi.org/10.1088/1755-1315/443/1/012002

Ashenafi, H. & Tura, S. 2018. Shelf life and quality of tomato (Lycopersicon esculentum Mill.) fruits as affected by different Packaging Materials. African Journal of Food Science, 12(2):21–27. DOI: https://doi.org/10.5897/AJFS2017.1568

Babatola, L. & Ibukunolu, U. 2020. Effect of different storage structures and duration of time on some postharvest qualities of tomato (Lycopersicon esculentum Mill.). Journal of Agriculture and Veterinary Science, 13(1): 33-41.

Buendía-Moreno, L., Ros-Chumillas, M., Navarro-Segura, L., Sánchez-Martínez, M.J., Soto-Jover, S., Antolinos, V., Martínez-Hernández, G.B. & López-Gómez, A. 2019. Effects of an active cardboard box using encapsulated essential oils on the tomato shelf life. Food and Bioprocess Technology, 12(9): 1548-1558. DOI: https://doi.org/10.1007/s11947-019-02311-0

Chen, L., Pan, Y., Li, H., Liu, Z., Jia, X., Li, W., Jia, H. & Li, X. 2020. Constant temperature during postharvest storage delays fruit ripening and enhances the antioxidant capacity of mature green tomato. Journal of Food Processing and Preservation, 44(11): 1-12. DOI: https://doi.org/10.1111/jfpp.14831

Dandago, M., Gungula, D. & Nahunnaro, H. 2019. Effect of chemical dips and packaging materials on quality and shelf life of tomatoes (Lycopersicon esculentum) in Kura, Nigeria. Journal of Horticulture and Postharvest Research, 2(2): 117-130.

Distefano, M., Arena, E., Mauro, R.P., Brighina, S., Leonardi, C., Fallico, B. & Giuffrida, F. 2020. Effects of genotype, storage temperature and time on quality and compositional traits of cherry tomato. Foods, 9(12): 1-15. DOI: https://doi.org/10.3390/foods9121729

Endalew, E. 2020. Postharvest Loss Assessment of Tomato (Lycopersicon esculentum Mill) (Galilea Cultivar) Along the Postharvest Supply Chain, Northwest Ethiopia (Master Thesis). Bahir Dar University, Bahir Dar, Ethiopia.

Esua, O. J., Chin, N. L., Yusof, Y. A., & Sukor, R. 2019. Combination of ultrasound and ultraviolet-C irradiation on kinetics of color, firmness, weight loss, and total phenolic content changes in tomatoes during storage. Journal of Food Processing and Preservation, 43(10): 1-12. DOI: https://doi.org/10.1111/jfpp.14161

Feizi, H., Kaveh, H., & Sahabi, H. 2020. Impact of different packaging schemes and transport temperature on post-harvest losses and quality of tomato (Solanum lycopersicum L.). Journal of Agricultural Science and Technology, 22(3): 801-814.

Firdous, N. 2021. Post-harvest losses in different fresh produces and vegetables in Pakistan with particular focus on tomatoes. Journal of Horticulture and Postharvest Research, 4(1):71-86.

Hackett, M.M., Lee, J.H., Francis, D. & Schwartz, S.J. 2004. Thermal stability and isomerization of lycopene in tomato oleoresins from different varieties. Journal of Food Science, 69(7): 536-541. DOI: https://doi.org/10.1111/j.1365-2621.2004.tb13647.x

Jung, J.M., Shim, J.Y., Chung, S.O., Hwang, Y.S., Lee, W.H. & Lee, H. 2019. Changes in quality parameters of tomatoes during storage: A review. Korean Journal of Agricultural Science, 46(2): 239-256.

Khalid, S., Majeed, M., Ullah, M., Shahid, M., Riasat, A., Abbas, T., Aatif, H. & Farooq, A. 2020. Effect of storage conditions and packaging material on postharvest quality attributes of strawberry. Journal of Horticulture and Postharvest Research, 3(2): 195-208.

Kumar, N., Kaur, P., Devgan, K. & Attkan, A. K. 2020. Shelf life prolongation of cherry tomato using magnesium hydroxide reinforced bio-nanocomposite and conventional plastic films. Journal of Food Processing and Preservation, 44(4): 1-11. DOI: https://doi.org/10.1111/jfpp.14379

Martínez-Hernández, G.B., Boluda-Aguilar, M., Taboada-Rodríguez, A., Soto-Jover, S., Marín-Iniesta, F. & López-Gómez, A. 2016. Processing, packaging, and storage of tomato products: influence on the lycopene content. Food Engineering Reviews, 8(1): 52-75. DOI: https://doi.org/10.1007/s12393-015-9113-3

Mendes, K.F., Mendes, K.F., Guedes, S.F., Silva, L.C.A.S. & Arthur, V. 2020. Evaluation of physicochemical characteristics in cherry tomatoes irradiated with 60Co gamma-rays on post-harvest conservation. Radiation Physics and Chemistry, 177(2020): 1-9. DOI: https://doi.org/10.1016/j.radphyschem.2020.109139

Mukama, M., Ambaw, A. & Opara, U.L. 2020. Advances in design and performance evaluation of fresh fruit ventilated distribution packaging: A review. Food Packaging and Shelf Life, 24: 1-14. DOI: https://doi.org/10.1016/j.fpsl.2020.100472

Nemeskéri, E., Neményi, A., Bőcs, A., Pék, Z. & Helyes, L. 2019. Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water, 11(3): 586. DOI: https://doi.org/10.3390/w11030586

Nkolisa, N., Magwaza, L.S., Workneh, T.S., Chimphango, A. & Sithole, N.J. 2019. Postharvest quality and bioactive properties of tomatoes (Solanum lycopersicum) stored in a low-cost and energy-free evaporative cooling system. Heliyon, 5(8): 1- 9. DOI: https://doi.org/10.1016/j.heliyon.2019.e02266

Ochida, C. O., Itodo, A. U., & Nwanganga, P. A. 2018. A review on postharvest storage, processing and preservation of tomatoes (Lycopersicon esculentum Mill). Asian Food Science Journal, 6(2): 1-10. DOI: https://doi.org/10.9734/AFSJ/2019/44518

Olveira-Bouzas, V., Pita-Calvo, C., Lourdes Vázquez-Odériz, M., & Ángeles Romero- Rodríguez, M. 2021. Evaluation of a modified atmosphere packaging system in pallets to extend the shelf-life of the stored tomato at cooling temperature. Food Chemistry, 364(2021): 1-10. DOI: https://doi.org/10.1016/j.foodchem.2021.130309

Patanè, C., Malvuccio, A., Saita, A., Rizzarelli, P., Siracusa, L., Rizzo, V., & Muratore, G. 2019. Nutritional changes during storage in fresh-cut long storage tomato as affected by biocompostable polylactide and cellulose based packaging. LWT, 101: 618-624. DOI: https://doi.org/10.1016/j.lwt.2018.11.069

Pathare, P. & Al-Dairi, M. 2021. Bruise damage and quality changes in impact-bruised, stored tomatoes. Horticulturae 7(5):113. DOI: https://doi.org/10.3390/horticulturae7050113

Pathare, P. B., Al Dairi, M. & Al-Mahdouri, A. 2020. Effect of storage conditions on postharvest quality of tomatoes: A case study at market-level. Journal of Agricultural and Marine Sciences, 26(1): 13–20.

Paulsen, E., Barrios, S., & Lema, P. 2019. Ready-to-eat cherry tomatoes: Passive modified atmosphere packaging conditions for shelf life extension. Food Packaging and Shelf Life, 22(2019): 1-8. DOI: https://doi.org/10.1016/j.fpsl.2019.100407

Pott, D.M., Vallarino, J.G. & Osorio, S. 2020. Metabolite changes during postharvest storage: Effects on fruit quality traits. Metabolites, 10(5):187-210. DOI: https://doi.org/10.3390/metabo10050187

Saberi, B., Golding, J. B., Chockchaisawasdee, S., Scarlett, C. J., & Stathopoulos, C. E. 2018. Effect of biocomposite edible coatings based on pea starch and guar gum on nutritional quality of “Valencia” orange during storage. Starch – Stärke, 70(5- 6). DOI: https://doi.org/10.1002/star.201700299

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. & Zheng, B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(2452): 1-22. DOI: https://doi.org/10.3390/molecules24132452

Shi, J., Mazza, G. & Le Maguer, M. 2002. Functional Foods: Biochemical and Processing Aspects. CRC Press, Boca Raton. 432 pp.

Suwanaruang, T. 2016. Analyzing lycopene content in fruits. Agriculture and Agricultural Science Procedia, 11: 46-48. DOI: https://doi.org/10.1016/j.aaspro.2016.12.008

Tilahun, S., Taye, A.M. & Jeong, C.S. 2017. Effects of storage duration on physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Horticultural Science and Technology, 35(1): 89-97. DOI: https://doi.org/10.12972/kjhst.20170010

van Roy, J, Keresztes, J, Wouters, N, De Ketelaere, B and Saeys, W. 2017. Measuring colour of vine tomatoes using hyperspectral imaging. Postharvest Biology and Technology, 129: 79-89. DOI: https://doi.org/10.1016/j.postharvbio.2017.03.006

Wonprasaid, N.K.S. dan Machikowa, T. 2021. Effects of varieties and environments on quality and antioxidants of tomato. KKU Science Journal, 49(1): 108-116.

Zekrehiwot, A., Yetenayet, B. T. & Ali, M. 2017. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon esculentum Mill.) fruits. African Journal of Agricultural Research, 12(8): 550–565. DOI: https://doi.org/10.5897/AJAR2016.11648



How to Cite

Azali, N. Z. ., Hashim, H. ., & Teh, A. H. . (2022). Effects of Temperature and Polyethylene Plastic Packaging on Physicochemical Changes and Antioxidant Properties of Tomato During Storage. Malaysian Applied Biology, 51(5), 211–219. https://doi.org/10.55230/mabjournal.v51i5.2341