Chlorella sp. (UKM8), A Local Microalgae Isolate with Anti-Human Herpes Virus and Antioxidant Properties


  • Abdul Fattah Shaima Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
  • Nazlina Haiza Mohd Yasin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
  • Nazlina Ibrahim Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia


Anti-HHV-1, methanol extract, antioxidant, biomass, Chlorella UKM8, microalgae


Microalgae are an invaluable source of new and safe therapeutics with potential antiviral and free-radical scavenging compounds. This study aimed to investigate the antiviral and antioxidant properties of local microalgae, Chlorella sp. (UKM8). The UKM8 methanol extract (UKM8-ME) was tested for antiviral activity using plaque reduction assay against Human Herpes Virus type 1 (HHV-1). The antioxidant activity of UKM8-ME was evaluated for the radical scavenging activity (RSA) according to the elimination of 1,1-diphenyl-2-pikrilhydrazil (DPPH) radicals and total phenolic content (TPC) by the Folin-Ciocalteu reactions. UKM8-ME effective concentration that inhibits 50% (EC50) of plaque formation was 222.33 ± 24.54 μg/mL. The calculated selective index is 19 indicating potential antiviral activity. In the DPPH assay, the IC50 value of positive control and UKM8-ME were 122.9 ± 29.1 and 198.78 ± 14.35 μg/mL, respectively. The TPC of positive control and UKM8-ME were 263.414 ± 9.6 and 254.793 ± 3.31 mg GAE/g, respectively. Evaluation in RSA and TPC concludes that UKM8-ME has high antioxidant activity. In conclusion, UKM8-ME has two unique properties in anti-HHV-1 and antioxidant activities that can be further evaluated for potential in pharmaceutics and food ingredients.


Download data is not yet available.


Metrics Loading ...


Adamson, C.S. 2020. Antiviral agents: discovery to resistance. Viruses, 12(4): 406. DOI:

Andrade, L.M., Andrade, C.J., Dias, M. & Nascimento, C.A.O. 2018. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. Food Science and Technology, 6: 45–58. DOI:

Azaman, S.N.A., Nagao, N., Yusoff, F.M., Tan, S.W. & Yeap, S.K. 2017. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. Peer Journal, 5: 3473. DOI:

Arguelles, E.D.L.R. 2020. Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1): 65-77.

Barchan, A., Bakkali, M., Arakrak, A., Pagán, R. & Laglaoui, A. 2014. The effects of solvents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. International Journal of Current Microbiology and Applied Sciences, 3(11): 399-412.

Besednova, N.N., Andryukov, B.G., Zaporozhets, T.S., Kryzhanovsky, S.P., Fedyanina, L.N., Kuznetsova, T.A., Zvyagintseva, T.N. & Shchelkanov, M.Y. 2021. Antiviral effects of polyphenols from marine algae. Biomedicines, 9: 200. DOI:

Cantú-Bernal, S., Domínguez-Gámez, M., Medina-Peraza, I., Aros-Uzarraga, E., Ontiveros, N., Flores-Mendoza, L., Gomez-Flores, R., Tamez-Guerra, P. & González-Ochoa, G. 2020. Enhanced viability and anti-rotavirus effect of Bifidobacterium longum and Lactobacillus plantarum in combination with Chlorella sorokiniana in a dairy product. Frontiers in Microbiology, 11: 1–9. DOI:

Chattopadhyay, D., Sarkar, M.C., Chatterjee, T., Dey, R.S., Bag, P., Chakraborti, S., Tareq, M. & Khan, H. 2009. Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnology, 25: 347–368. DOI:

Choochote, W., Suklampoo, L. & Ochaikul, D. 2014. Evaluation of antioxidant capacities of green microalgae. Journal of Applied Phycology, 26: 43–48. DOI:

El-fayoumy, E.A., Shanab, S.M.M. & Shalaby, E.A. 2020. Metabolomics and biological activities of Chlorella vulgaris grown under modified growth medium (BG 11) composition. Chiang Mai University Journal of Natural Sciences, 19: 93. DOI:

El-feky, A.M., Elbatanony, M.M., Naser, A.F.A., Kutkat, O.M., El, A.E.B. & Hamed, M.A. 2020. Phytoconstituents and in vitro anti-oxidant, anti-viral, anti-hyperlipidemic and anticancer effects of Chlorella vulgaris microalga in normal and stress conditions. Der Pharma Chemica, 12: 9–20.

El-Sheekh, M.M., Shabaan, M.T., Hassan, L. & Morsi, H.H. 2022. Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herpes Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research, 32(3): 616-627. DOI:

Fabregas, J., García, D., Fernandez-Alonso, M., Rocha, A.I., Gómez-Puertas, P., Escribano, J.M., Otero, A. & Coll, J.M. 1999. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Research, 44: 67–73. DOI:

Fukada, T., Hoshino, M., Endo, H., Mutai, M. & Shirota, M. 1968. Photodynamic antiviral substance extracted from Chlorella cells. Applied Microbiology, 16: 1809–1810. DOI:

Ismaeel, M., Dyari, H.R.E., Nor, N.S.M., Yaacob, W.A. & Ibrahim, N. 2018. Anti-human herpesvirus type-1 activity of Phaleria macrocarpa fruits methanol extract and fractions. Malaysian Applied Biology, 47(5): 31-40.

Jafari, S., Mobasher, M.A., Najafipour, S., Ghasemi, Y., Mohkam, M., Ebrahimi, M.A. & Mobasher, N. 2018. Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur Journal of Natural Pharmaceutical Products, 13(2): e13226. DOI:

Japar, A.S., Takriff, M.S. and Yasin, N.H.M. 2021. Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research, 53:102163. DOI:

Katharios, P., Papadakis, I.E., Prapas, A., Dermon, C.R., Ampatzis, K. & Divanach, P. 2005. Mortality control of viral encephalopathy and retinopathy in 0+ grouper Epinephelus marginatus after prolonged bath in dense Chlorella minutissima culture. Bulletin of the European Association of Fish Pathologists, 25(1): 28-31.

Manivannan, K., Anantharaman, P. & Balasubramanian, T. 2012. Evaluation of antioxidant properties of marine microalga Chlorella marina (Butcher, 1952). Asian Pacific Journal of Tropical Biomedicine, 2(1): 342-346. DOI:

Martelli, G. & Giacomini, D. 2018. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. European Journal of Medicinal Chemistry, 158: 91-105. DOI:

Ningsiha, I.Y., Zulaikhaha, S., Hidayata, A. & Kuswandib, B. 2016. Antioxidant activity of various kenitu (Chrysophyllum cainito L.) leaves extracts from Jember, Indonesia. Agriculture and Agriculture Science Procedia, 9: 378-85. DOI:

Phang, S., Mustafa, E.M., Ambati, R.R., Meriam, N., Sulaiman, N., Lim, P., Majid, N.A. & Dommange, X. 2015. Checklist of microalgae collected from different habitats in Peninsular Malaysia for selection of algal biofuel feed-stocks. Malaysian Journal of Science, 34(2): 141-167. DOI:

Pradhan, B., Patra, S., Dash, S.R., Nayak, R., Behera, C. & Jena, M. 2021. Evaluation of the anti-bacterial activity of methanolic extract of Chlorella vulgaris with special reference to antioxidant modulation. Future Journal of Pharmaceutical Sciences, 7(1): 1-11. DOI:

Rajasekaran, M. & Kalaimagal, C. 2011. In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. Journal of Pharmaceutical Sciences and Research, 3(9): 1427.

Rico, M., González, A.G., Santana-Casiano, M., González-Dávila, M., Pérez-Almeida, N. & Tangil, M.S.D. 2017. Production of primary and secondary metabolites using algae. In: Prospects and Challenges in Algal Biotechnology. B.N. Tripathi & D. Kumar (Eds.). Springer, Singapore. pp. 311-326. DOI:

Santoyo, S., Plaza, M., Jaime, L., Ibañez, E., Reglero, G. & Señorans, F.J. 2010. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58(15): 8522-8527. DOI:

Sawant, S.S. & Mane, V.K. 2018. Nutritional profile, antioxidant, antimicrobial potential, and bioactives profile of Chlorella emersonii kj725233. Asian Journal of Pharmaceutical and Clinical Research, 11(3): 220-225. DOI:

Shaima, A.F., Yasin, N.H.M., Ibrahim, N., Takriff, M.S., Gunasekaran, D. & Ismaeel, M.Y. 2022. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi Journal of Biological Sciences, 29(2): 1043-1052. DOI:

Vello, V., Umashankar, S., Phang, S. & Chu, W. 2018. Metabolomic profiles of tropical Chlorella and Parachlorella species in response to physiological changes during exponential and stationary growth phase. Algal Research, 35: 61–75. DOI:

Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z.J., Kregiel, D., Jacob, C. & Kolesinska, B. 2020. Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules, 25(8): 1790. DOI:



How to Cite

Shaima, A. F., Mohd Yasin, N. H., & Ibrahim, N. (2022). Chlorella sp. (UKM8), A Local Microalgae Isolate with Anti-Human Herpes Virus and Antioxidant Properties. Malaysian Applied Biology, 51(5), 153–158.