Chlorella sp. (UKM8), A Local Microalgae Isolate with Anti-Human Herpes Virus and Antioxidant Properties

https://doi.org/10.55230/mabjournal.v51i5.2405

Authors

  • Abdul Fattah Shaima Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
  • Nazlina Haiza Mohd Yasin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia https://orcid.org/0000-0003-0888-8780
  • Nazlina Ibrahim Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia

Keywords:

Anti-HHV-1, methanol extract, antioxidant, biomass, Chlorella UKM8, microalgae

Abstract

Microalgae are an invaluable source of new and safe therapeutics with potential antiviral and free-radical scavenging compounds. This study aimed to investigate the antiviral and antioxidant properties of local microalgae, Chlorella sp. (UKM8). The UKM8 methanol extract (UKM8-ME) was tested for antiviral activity using plaque reduction assay against Human Herpes Virus type 1 (HHV-1). The antioxidant activity of UKM8-ME was evaluated for the radical scavenging activity (RSA) according to the elimination of 1,1-diphenyl-2-pikrilhydrazil (DPPH) radicals and total phenolic content (TPC) by the Folin-Ciocalteu reactions. UKM8-ME effective concentration that inhibits 50% (EC50) of plaque formation was 222.33 ± 24.54 μg/mL. The calculated selective index is 19 indicating potential antiviral activity. In the DPPH assay, the IC50 value of positive control and UKM8-ME were 122.9 ± 29.1 and 198.78 ± 14.35 μg/mL, respectively. The TPC of positive control and UKM8-ME were 263.414 ± 9.6 and 254.793 ± 3.31 mg GAE/g, respectively. Evaluation in RSA and TPC concludes that UKM8-ME has high antioxidant activity. In conclusion, UKM8-ME has two unique properties in anti-HHV-1 and antioxidant activities that can be further evaluated for potential in pharmaceutics and food ingredients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adamson, C.S. 2020. Antiviral agents: discovery to resistance. Viruses, 12(4): 406. https://doi.org/10.3390/v12040406 DOI: https://doi.org/10.3390/v12040406

Andrade, L.M., Andrade, C.J., Dias, M. & Nascimento, C.A.O. 2018. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. Food Science and Technology, 6: 45–58. DOI: https://doi.org/10.15406/mojfpt.2018.06.00144

Azaman, S.N.A., Nagao, N., Yusoff, F.M., Tan, S.W. & Yeap, S.K. 2017. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. Peer Journal, 5: 3473. DOI: https://doi.org/10.7717/peerj.3473

Arguelles, E.D.L.R. 2020. Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1): 65-77.

Barchan, A., Bakkali, M., Arakrak, A., Pagán, R. & Laglaoui, A. 2014. The effects of solvents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. International Journal of Current Microbiology and Applied Sciences, 3(11): 399-412.

Besednova, N.N., Andryukov, B.G., Zaporozhets, T.S., Kryzhanovsky, S.P., Fedyanina, L.N., Kuznetsova, T.A., Zvyagintseva, T.N. & Shchelkanov, M.Y. 2021. Antiviral effects of polyphenols from marine algae. Biomedicines, 9: 200. DOI: https://doi.org/10.3390/biomedicines9020200

Cantú-Bernal, S., Domínguez-Gámez, M., Medina-Peraza, I., Aros-Uzarraga, E., Ontiveros, N., Flores-Mendoza, L., Gomez-Flores, R., Tamez-Guerra, P. & González-Ochoa, G. 2020. Enhanced viability and anti-rotavirus effect of Bifidobacterium longum and Lactobacillus plantarum in combination with Chlorella sorokiniana in a dairy product. Frontiers in Microbiology, 11: 1–9. DOI: https://doi.org/10.3389/fmicb.2020.00875

Chattopadhyay, D., Sarkar, M.C., Chatterjee, T., Dey, R.S., Bag, P., Chakraborti, S., Tareq, M. & Khan, H. 2009. Recent advancements for the evaluation of anti-viral activities of natural products. New Biotechnology, 25: 347–368. DOI: https://doi.org/10.1016/j.nbt.2009.03.007

Choochote, W., Suklampoo, L. & Ochaikul, D. 2014. Evaluation of antioxidant capacities of green microalgae. Journal of Applied Phycology, 26: 43–48. DOI: https://doi.org/10.1007/s10811-013-0084-6

El-fayoumy, E.A., Shanab, S.M.M. & Shalaby, E.A. 2020. Metabolomics and biological activities of Chlorella vulgaris grown under modified growth medium (BG 11) composition. Chiang Mai University Journal of Natural Sciences, 19: 93. DOI: https://doi.org/10.12982/CMUJNS.2020.0007

El-feky, A.M., Elbatanony, M.M., Naser, A.F.A., Kutkat, O.M., El, A.E.B. & Hamed, M.A. 2020. Phytoconstituents and in vitro anti-oxidant, anti-viral, anti-hyperlipidemic and anticancer effects of Chlorella vulgaris microalga in normal and stress conditions. Der Pharma Chemica, 12: 9–20.

El-Sheekh, M.M., Shabaan, M.T., Hassan, L. & Morsi, H.H. 2022. Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herpes Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research, 32(3): 616-627. DOI: https://doi.org/10.1080/09603123.2020.1789946

Fabregas, J., García, D., Fernandez-Alonso, M., Rocha, A.I., Gómez-Puertas, P., Escribano, J.M., Otero, A. & Coll, J.M. 1999. In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Research, 44: 67–73. DOI: https://doi.org/10.1016/S0166-3542(99)00049-2

Fukada, T., Hoshino, M., Endo, H., Mutai, M. & Shirota, M. 1968. Photodynamic antiviral substance extracted from Chlorella cells. Applied Microbiology, 16: 1809–1810. DOI: https://doi.org/10.1128/am.16.11.1809-1810.1968

Ismaeel, M., Dyari, H.R.E., Nor, N.S.M., Yaacob, W.A. & Ibrahim, N. 2018. Anti-human herpesvirus type-1 activity of Phaleria macrocarpa fruits methanol extract and fractions. Malaysian Applied Biology, 47(5): 31-40.

Jafari, S., Mobasher, M.A., Najafipour, S., Ghasemi, Y., Mohkam, M., Ebrahimi, M.A. & Mobasher, N. 2018. Antibacterial potential of Chlorella vulgaris and Dunaliella salina extracts against Streptococcus mutans. Jundishapur Journal of Natural Pharmaceutical Products, 13(2): e13226. DOI: https://doi.org/10.5812/jjnpp.13226

Japar, A.S., Takriff, M.S. and Yasin, N.H.M. 2021. Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research, 53:102163. DOI: https://doi.org/10.1016/j.algal.2020.102163

Katharios, P., Papadakis, I.E., Prapas, A., Dermon, C.R., Ampatzis, K. & Divanach, P. 2005. Mortality control of viral encephalopathy and retinopathy in 0+ grouper Epinephelus marginatus after prolonged bath in dense Chlorella minutissima culture. Bulletin of the European Association of Fish Pathologists, 25(1): 28-31.

Manivannan, K., Anantharaman, P. & Balasubramanian, T. 2012. Evaluation of antioxidant properties of marine microalga Chlorella marina (Butcher, 1952). Asian Pacific Journal of Tropical Biomedicine, 2(1): 342-346. DOI: https://doi.org/10.1016/S2221-1691(12)60185-3

Martelli, G. & Giacomini, D. 2018. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. European Journal of Medicinal Chemistry, 158: 91-105. DOI: https://doi.org/10.1016/j.ejmech.2018.09.009

Ningsiha, I.Y., Zulaikhaha, S., Hidayata, A. & Kuswandib, B. 2016. Antioxidant activity of various kenitu (Chrysophyllum cainito L.) leaves extracts from Jember, Indonesia. Agriculture and Agriculture Science Procedia, 9: 378-85. DOI: https://doi.org/10.1016/j.aaspro.2016.02.153

Phang, S., Mustafa, E.M., Ambati, R.R., Meriam, N., Sulaiman, N., Lim, P., Majid, N.A. & Dommange, X. 2015. Checklist of microalgae collected from different habitats in Peninsular Malaysia for selection of algal biofuel feed-stocks. Malaysian Journal of Science, 34(2): 141-167. DOI: https://doi.org/10.22452/mjs.vol34no2.2

Pradhan, B., Patra, S., Dash, S.R., Nayak, R., Behera, C. & Jena, M. 2021. Evaluation of the anti-bacterial activity of methanolic extract of Chlorella vulgaris with special reference to antioxidant modulation. Future Journal of Pharmaceutical Sciences, 7(1): 1-11. DOI: https://doi.org/10.1186/s43094-020-00172-5

Rajasekaran, M. & Kalaimagal, C. 2011. In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. Journal of Pharmaceutical Sciences and Research, 3(9): 1427.

Rico, M., González, A.G., Santana-Casiano, M., González-Dávila, M., Pérez-Almeida, N. & Tangil, M.S.D. 2017. Production of primary and secondary metabolites using algae. In: Prospects and Challenges in Algal Biotechnology. B.N. Tripathi & D. Kumar (Eds.). Springer, Singapore. pp. 311-326. DOI: https://doi.org/10.1007/978-981-10-1950-0_12

Santoyo, S., Plaza, M., Jaime, L., Ibañez, E., Reglero, G. & Señorans, F.J. 2010. Pressurized liquid extraction as an alternative process to obtain antiviral agents from the edible microalga Chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58(15): 8522-8527. DOI: https://doi.org/10.1021/jf100369h

Sawant, S.S. & Mane, V.K. 2018. Nutritional profile, antioxidant, antimicrobial potential, and bioactives profile of Chlorella emersonii kj725233. Asian Journal of Pharmaceutical and Clinical Research, 11(3): 220-225. DOI: https://doi.org/10.22159/ajpcr.2018.v11i3.21990

Shaima, A.F., Yasin, N.H.M., Ibrahim, N., Takriff, M.S., Gunasekaran, D. & Ismaeel, M.Y. 2022. Unveiling antimicrobial activity of microalgae Chlorella sorokiniana (UKM2), Chlorella sp. (UKM8) and Scenedesmus sp. (UKM9). Saudi Journal of Biological Sciences, 29(2): 1043-1052. DOI: https://doi.org/10.1016/j.sjbs.2021.09.069

Vello, V., Umashankar, S., Phang, S. & Chu, W. 2018. Metabolomic profiles of tropical Chlorella and Parachlorella species in response to physiological changes during exponential and stationary growth phase. Algal Research, 35: 61–75. DOI: https://doi.org/10.1016/j.algal.2018.08.014

Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z.J., Kregiel, D., Jacob, C. & Kolesinska, B. 2020. Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules, 25(8): 1790. DOI: https://doi.org/10.3390/molecules25081790

Published

26-12-2022

How to Cite

Shaima, A. F., Mohd Yasin, N. H., & Ibrahim, N. (2022). Chlorella sp. (UKM8), A Local Microalgae Isolate with Anti-Human Herpes Virus and Antioxidant Properties. Malaysian Applied Biology, 51(5), 153–158. https://doi.org/10.55230/mabjournal.v51i5.2405