Antibacterial Potential of Fungal Endophytes From Selected Seaweeds From Johor Coast
Keywords:
antibacterial potential, Seaweed, identification, endophytic fungiAbstract
Endophytic fungi from marine seaweed have been known to be the source of new secondary biological metabolites. The ample coast in Malaysia in particular the Johor Coast has diverse marine seaweed, home to potential marine endophytic fungi. In this light, this study aims to characterise endophytic fungi in selected seaweeds from the Johor Coast and determine the antibacterial potential. Fungal endophytes were aseptically isolated from brown seaweed, Sargassum sp. and green algae, Ulva lactuca. Macroscopic and microscopic observations were performed for characterisation as fungal genera. Sequence analysis of Internal Transcribed Spacer (ITS) suggested the five fungal isolates as Trichoderma asperellum, Aspergillus aculeatus, Aspergillus fumigatus, Penicillium sp. FKI-3389 and Hypoxylon monticulosum. Antibacterial activity was determined by minimum inhibition concentration assay against five human pathogenic bacteria. Only T. asperellum, A. fumigatus and H. monticulosum showed antibacterial potential with the latter indicating broad-spectrum antibacterial activity. As a conclusion, five endophytic fungal species were successfully determined from the brown and green seaweeds. Three of the fungal endophytes showed potential in antibacterial activity with H. monticulosum displayed broad spectrum activity.
Downloads
Metrics
References
Azlan, M.H.A., Zainee, N.F.A & Ibrahim, N. 2024. Antibacterial activity and bioactive compounds of a marine macroalgae endophytic fungi, Hypoxylon monticulosum. Malaysian Journal of Microbiology, 20(2): 148-157. DOI: https://doi.org/10.21161/mjm.230352
Bailey, B.A. Bae, H., Strem, M.D., Roberts, D.P., Thomas, S.E., Crozier, J., Samuels, G.J., Choi, I.Y. & Holmes, K.A. 2006. Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6): 1449-1464. DOI: https://doi.org/10.1007/s00425-006-0314-0
Bissett, J., Gams, W., Jaklitsch, W. & Samuels, G.J. 2015. Accepted Trichoderma names in the year 2015. IMA Fungus, 6(2): 263-295. DOI: https://doi.org/10.5598/imafungus.2015.06.02.02
Bridge, P.D. 1985. An evaluation of some physiological and biochemical methods as an aid to the characterization of species of Penicillium subsection Fasciculata. Journal of General Microbiology 131(8): 1887-1895. DOI: https://doi.org/10.1099/00221287-131-8-1887
Cheng, M.J., Wu, M.D., Aung T., Liao, H.R., Khamthong, N. & Hsieh, S.Y. 2020. Metabolites from the endophytic fungus Hypoxylon monticulosum. Chemistry of Natural Compounds 56(6): 1170-1172. DOI: https://doi.org/10.1007/s10600-020-03258-x
Clinical and Laboratory Standards Institute. 2020. CLSI Document. M100-S30. Performance standards for antimicrobial susceptibility testing. 30th Edition.
El-Bondkly, E.A.M., El-Bondkly, Alaa Ahmed Mohamed & El-Bondkly, Aya Ahmed Mohamed, 2021. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 7(3): e06362. DOI: https://doi.org/10.1016/j.heliyon.2021.e06362
Farha, A.K. & Hatha, A.M. 2019. Bioprospecting potential and secondary metabolite profile of a novel sediment-derived fungus Penicillium sp. ArCSPf from the continental slope of Eastern Arabian Sea. Mycology, 10(2): 09-117. DOI: https://doi.org/10.1080/21501203.2019.1572034
Grimm, L.H., Kelly, S., Krull, R. & Hempel, D.C. 2005. Morphology and productivity of filamentous fungi. Applied Microbiology and Biotechnology 69(4): 375-384. DOI: https://doi.org/10.1007/s00253-005-0213-5
Guarro, J., Gené, J. & Stchigel, A.M. 1999. Developments in fungal taxonomy. Clinical Microbiology Reviews, 12(3): 454-500. DOI: https://doi.org/10.1128/CMR.12.3.454
Hamzah, T.N.T., Lee, S. Y., Hidayat, A., Terhem, R., Faridah-Hanum, I. & Mohamed, R. 2018. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Frontiers in Microbiology, 9(JUL): 1-17. DOI: https://doi.org/10.3389/fmicb.2018.01707
Lee, Y.M. Kim, M.J., Li, H., Zhang, P., Bao, B., Lee, K.J. & Jung, J.H. 2013. Marine-derived Aspergillus species as a source of bioactive secondary metabolites. Marine Biotechnology, 15(5): 499-519. DOI: https://doi.org/10.1007/s10126-013-9506-3
Leman-Loubière, C., Le Goff, G., Debitus, C. & Ouazzani, J. 2017b. Sporochartines A-E, a new family of natural products from the marine fungus Hypoxylon monticulosum isolated from a Sphaerocladina sponge. Frontiers in Marine Science, 4(Dec): 1-9. DOI: https://doi.org/10.3389/fmars.2017.00399
Leman-Loubière, C., Le Goff, G., Retailleau, P., Debitus, C., & Ouazzani, D. 2017a. Sporothriolide-related compounds from the fungus Hypoxylon monticulosum CLL-205 isolated from a sphaerocladina sponge from the Tahiti Coast. Journal of Natural Products, 80(10): 2850-2854. DOI: https://doi.org/10.1021/acs.jnatprod.7b00714
Lini, I.F., Afroz, F., Begum, N., Rony, S.R., Sharmin, S., Moni, F. & Sohrab, M.H. 2020. Identification and bioactive potential of endophytic fungi from marine weeds available in the coastal area of Bangladesh. International Journal of Pharmaceutical Science Research,11(3):1249-1257.
Lutfia, A., Munir, E., Yurnaliza, Y. & Basyuni, M. 2021. Chemical analysis and anticancer activity of sesterterpenoid from an endophytic fungus Hypomontagnella monticulosa Zg15SU and its host Zingiber griffithii Baker. Heliyon, 7(2): e06292. DOI: https://doi.org/10.1016/j.heliyon.2021.e06292
Moore, D., McNulty, L.J. & Meskauskas, A. 2005. Branching in fungal hyphae and fungal tissues: growing mycelia in a desktop computer. Branching Morphogenesis, 1: 75-80. DOI: https://doi.org/10.1007/0-387-30873-3_4
Pang, K.L. & Mitchell, J.I. 2005. Molecular approaches for assessing fungal diversity in marine substrata. Botanica Marina, 48(5-6): 332-347. DOI: https://doi.org/10.1515/bot.2005.046
Saleem, M., Tousif, M.I., Riaz, N., Ahmed, Ishtiaq; S., Barbara, A., Muhammad Nasar, R., Pescitelli, G., Hussain, H., Jabbar, A., Shafiq, N. & Krohn, K. 2013. Cryptosporioptide: A bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry, 93: 199-202. DOI: https://doi.org/10.1016/j.phytochem.2013.03.018
Samson, R.A., Hong S.B. & Frisvad, J.C. 2006. Old and new concepts of species differentiation in Aspergillus. Medical Mycology, 44: 133-148. DOI: https://doi.org/10.1080/13693780600913224
Sánchez-Ballesteros, J., González, V., Salazar, O., Acero, J., Portal, M.A., Julián, M., Rubio, V, Bills, G.F., Polishook, J.D., Platas, G., Mochales S. & Peláez, F. 2000. Phylogenetic study of Hypoxylon and related genera based on ribosomal ITS sequences. Mycologia, 92(5): 964-977. DOI: https://doi.org/10.1080/00275514.2000.12061240
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A. & Chen, W. 2012. Nuclear ribosomal internal transcribed spacer ( ITS ) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16): 6241-6246. DOI: https://doi.org/10.1073/pnas.1207508109
Sharon, E., Chet, I., Viterbo, A., Bar-eyal, M., Harel Nagan, Samuels, G. & Spiegel Y. 2007. Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. European Journal of Plant Pathology, 118(3): 247-258. DOI: https://doi.org/10.1007/s10658-007-9140-x
Soliman, S.S., Trobacher, C.P., Tsao, R., Greenwood, J.S. & Raizada, M.N. 2013. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biology, 13(1): 93. DOI: https://doi.org/10.1186/1471-2229-13-93
Stadler, M., Dang, N.Q., Ayumi, T., Toshihiro, H. & Yoshinori, A. 2006. Changes in secondary metabolism during stromatal ontogeny of Hypoxylon fragiforme. Mycological Research, 110(7): 811-820. DOI: https://doi.org/10.1016/j.mycres.2006.03.013
Stadler, M., Fournier, J., Læssøe, T., Lechat, C., Tichy, H.-V. & Piepenbring, M. 2008. Recognition of hypoxyloid and xylarioid Entonaema species and allied Xylaria species from a comparison of holomorphic morphology, HPLC profiles, and ribosomal DNA sequences. Mycological Progress, 7(1): 53-73. DOI: https://doi.org/10.1007/s11557-008-0553-5
Sultan, S., Shah, S.A.A., Sun, L., Ramasami, K., Cole, A., Blunt, J., Murno H.G.M. & Weber, J.F.F. 2011. Bioactive fungal metabolites of 9PR2 isolated from roots of Callophyllum ferrugineum. International Journal of Pharmacy and Pharmaceutical Sciences, 3(SUPPL.1): 7-9.
Thong-han, Z., Wang, Y-n., Chen, W-l., Qin, Z-b., Du, S-d., Wang, Y-q. Zhu, D-y. & Key, W-m. 2015. New marine natural products from the marine-derived fungi other than Penicillium sp. and Aspergillus sp. (1995-2014). Chinese Journal of Marine Drugs, 34(4): 56-107.
Tong, W. Y., Darah, I. & Latiffah, Z. 2011. Antimicrobial activities of endophytic fungal isolates from medicinal herb Orthosiphon stamineus Benth. Journal of Medicinal Plants Research, 5(5): 831-836.
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A. & Osek, J. 2022. Antibiotic resistance in bacteria-A review. Antibiotics,11(8): 1079. DOI: https://doi.org/10.3390/antibiotics11081079
Visagie, C.M., Houbraken, J., Frisvad, J.C., Hong, S.B., Klaassen, C.H.W., Perrone, G., Seifert, K.A., Varga, J., Yaguchi, T. & Samson, R.A. 2014. Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78: 343-371. DOI: https://doi.org/10.1016/j.simyco.2014.09.001
Webster, J. & Weber, R. 2007. Introduction to Fungi, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511809026
Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J. & Chen, J. 2017. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One, 12(6): 1-20. DOI: https://doi.org/10.1371/journal.pone.0179957
Xu, X., Han, J., Wang, Y., Lin, R., Yang, H., Li, J., Wei, S., Polyak, S.W. & Song. 2019. Two New spiro-heterocyclic γ-lactams from a marine-derived Aspergillus fumigatus strain CUGBMF170049. Marine Drugs, 17(5): 5-12. DOI: https://doi.org/10.3390/md17050289
Yodsing, N,. Lekphrom, R., Sangsopha, W., Aimi, T. & Boonlue, S. 2018. Secondary metabolites and their biological activity from Aspergillus aculeatus KKU-CT2. Current Microbiology, 75(5): 513-518. DOI: https://doi.org/10.1007/s00284-017-1411-y
Zainee N., Ibrahim, N., Ismail, A., Taip, M. & Ismail, A. 2019b. Diversity of endophytic fungi isolated from the leaves, stipes and receptacles of the Malaysian marine brown algae, Sargassum (Phaeophyta, Sargassaceae). Malayan Nature Journal, 71(2): 139-148.
Zainee N.F.A., Ismail, A., Taip, M., Ibrahim, N. & Ismail, A. 2018b. Kepelbagaian kulat endofit daripada Ulva lactuca: Alga hijau dominan di Malaysia. Malaysian Applied Biology, 47(5): 41-45.
Zainee, N. F. A., Ismail, A., Ibrahim, N. & Ismail, A. 2018a. Seaweed temporal distribution in the southeast coast of Peninsular Malaysia and isolation of endophytic fungi. AIP Conference Proceedings, 1940: 020069. DOI: https://doi.org/10.1063/1.5027984
Zainee, N., Ibrahim, N. & Ahmad, I. 2019a. Kepelbagaian Pencilan Kulat Endofit Rumpai Laut. UKM Press, Bangi.
Zainee, N.F.A., Ibrahim, N., Hidayah, N. & Rozaimi, M. 2021. Variation in antibacterial properties of endophytic fungi isolated from Malaysian Phaeophytes and Rhodophytes of Johor, Malaysia. Journal of Environmental Biology, 42: 840-848. DOI: https://doi.org/10.22438/jeb/42/3(SI)/JEB-16
Published
How to Cite
Issue
Section
Any reproduction of figures, tables and illustrations must obtain written permission from the Chief Editor (wicki@ukm.edu.my). No part of the journal may be reproduced without the editor’s permission
Funding data
-
Universiti Kebangsaan Malaysia
Grant numbers GUP-2016-055