Anatomical and Histochemical Analysis of Hoya pentaphlebia MERR. Flower: Insights into Structure and Chemical Composition

https://doi.org/10.55230/mabjournal.v53i6.14

Authors

  • Syazwani Basir Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia https://orcid.org/0000-0002-1203-537X
  • Noraini Talip Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
  • Hamidun Bunawan Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
  • Ruzi Abdul Rahman Bangi Botanic Gardens, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Keywords:

Anatomy, GC-MS, Hoya, methyl salicylate, nectary, trichome

Abstract

Hoya R.Br. is an epiphytic plant known as an exotic ornamental plant with distinctive, unique, and fragrant flowers. Investigating its floral structure is crucial for understanding how these structures may contribute to the production and storage of secondary metabolites emitted by Hoya. This study aimed to identify the type and position of floral glands in Hoya pentaphlebia. The investigations began by identifying the type and position of the floral glands, utilizing light microscopy, electron microscopy, and histochemical staining techniques. Secondary nectaries (sn) were discovered in the corona lobe, while conical-shaped glandular trichomes (unicellular) (ct) were at the adaxial epidermis of the corolla. The secretory activity of proteins, lipids, polysaccharides, and starch grains was found in sn, whereas ct detected only lipids and proteins. Subsequent studies to identify the secondary metabolite profiles characterizing aroma emitted from H. pentaphlebia flowers using gas chromatography-mass spectrometry (GC-MS) showed 26 compounds were identified, with the methyl salicylate (MeSA) compounds being the most abundant. In conclusion, this study successfully identified the floral glands and secondary metabolites present as aromas in the species studied. Sn and ct were discovered to be present for the first time in H. pentaphlebia, providing new information into the Hoya’s floral structures. The presence of floral glands indicates the existence of secondary aromatic metabolites that play a role in the interaction between plants and numerous environmental elements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M.M. & Fan, Y. 2017. Volatile terpenoids: Multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 246(5): 803-816. DOI: https://doi.org/10.1007/s00425-017-2749-x

Allsopp, E., Prinsloo, G.J., Smart, L.E. & Dewhirst, S.Y. 2014. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod-Plant Interactions, 8(5): 421-427. DOI: https://doi.org/10.1007/s11829-014-9323-2

Altenburger, R. & Matile, P. 1988. Circadian rhythmicity of fragrance emission in Hoya carnosa R. Br. Planta, 174(2): 248-252. DOI: https://doi.org/10.1007/BF00394778

Basir, S., Akbar, M.A., Talip, N., Baharum, S.N. & Bunawan, H. 2022b. An integrative volatile terpenoid profiling and transcriptomics analysis in Hoya cagayanensis, Hoya lacunosa and Hoya coriacea (Apocynaceae, Marsdenieae). Horticulturae, 8(3): 224-434. DOI: https://doi.org/10.3390/horticulturae8030224

Basir, S., Saad, M.F.M., Rahman, M.R.A, Talip, N., Baharum, S.N. & Bunawan, H. 2022a. Floral nectary and trichome structure of Hoya cagayanensis, Hoya lacunosa, and Hoya coriacea (Apocynaceae, Marsdenieae). Horticulturae, 8(5): 420- 431. DOI: https://doi.org/10.3390/horticulturae8050420

Brouat, C., McKey, D., Bessière, J.M., Pascal, L. & Hossaert-McKey, M. 2000. Leaf volatile compounds and the distribution of ant patrollingin an ant-plant protection mutualism: Preliminary results onLeonardoxa (Fabaceae: Caesalpinioideae) andPetalomyrmex (Formicidae: Formicinae). Acta Oecologica, 21(6): 349-357. DOI: https://doi.org/10.1016/S1146-609X(00)01091-2

Chen, F., D'Auria, J.C., Tholl, D., Ross, J.R., Gershenzon, J., Noel, J.P. & Pichersky, E. 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defence. The Plant Journal, 36(5): 577-588. DOI: https://doi.org/10.1046/j.1365-313X.2003.01902.x

Chermenskaya, T.D., Burov, V.N., Maniar, S.P., Pow, E.M., Roditakis, N., Selytskaya, O.G. & Woodcock, C.M. 2001. Behavioural responses of western flower thrips, Frankliniella occidentalis (Pergande), to volatiles from three aromatic plants. International Journal of Tropical Insect Science, 21(1): 67-72. DOI: https://doi.org/10.1017/S1742758400020063

Chwil, M., Kostryco, M. & Matraszek-Gawron, R. 2019. Comparative studies on structure of the floral nectaries and the abundance of nectar production of Prunus laurocerasus L. Protoplasma, 256(6): 1705-1726. DOI: https://doi.org/10.1007/s00709-019-01412-z

Daawia, Buot Jr, I.E., Krisantini, & Suratman, D. 2023. A Preliminary Survey of the Genus Hoya R. Br. (Apocynaceae) in Papua, Indonesia, with notes on Hoya as larval food plant of Euploea netscheri Snellen. In: Plant Diversity in Biocultural Landscapes. S. Ramamoorthy, I.E. Buot Jr and R. Chandrasekaran (Eds.). Springer Nature Singapore, Singapore. pp. 123-134. DOI: https://doi.org/10.1007/978-981-19-8649-9_6

De Boer, J.G. & Dicke, M. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. Journal of Chemical Ecology, 30(2): 255-271. DOI: https://doi.org/10.1023/B:JOEC.0000017976.60630.8c

Demarco, D. 2017a. Histochemical analysis of plant secretory structures. In: Histochemistry of Single Molecules. C. Pellicciari and M. Biggiogera M (Eds.). Humana Press, New York. pp. 313-330. DOI: https://doi.org/10.1007/978-1-4939-6788-9_24

Demarco, D. 2017b. Floral glands in Asclepiads: Structure, diversity and evolution. Acta Botanica Brasilica, 31(3): 477-502. DOI: https://doi.org/10.1590/0102-33062016abb0432

Deng, C., Song, G. & Hu, Y. 2004. Application of HS-SPME and GC-MS to characterization of volatile compounds emitted from Osmanthus flowers. Journal of Analytical Environmental and Cultural Heritage Chemistry, 94(12): 921-927. DOI: https://doi.org/10.1002/adic.200490114

Don, S.M.M., Hamid, N.M.A., Taha, H., Sukri, R.S. & Metali, F. 2021. Vegetative propagation of Hoya imperialis and Hoya coronaria by stem cutting and micropropagation. Tropical Life Sciences Research, 32(3): 1-23. DOI: https://doi.org/10.21315/tlsr2021.32.3.1

Dudareva, N. & Pichersky, E. 2006. Biology of Floral Scent. CRC Press, London. pp. 74. DOI: https://doi.org/10.1201/9781420004007

Dudareva, N., Pichersky, E. & Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiology, 135(4): 1893-1902. DOI: https://doi.org/10.1104/pp.104.049981

Dudareva, N., Raguso, R.A., Wang, J., Ross, J.R. & Pichersky, E. 1998. Floral scent production in Clarkia breweri: III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiology, 116(2): 599-604. DOI: https://doi.org/10.1104/pp.116.2.599

Dunkel, M., Schmidt, U., Struck, S., Berger, L., Gruening, B., Hossbach, J., Jaeger, I.S.,Effmert, U., Piechulla, B., Eriksson, R., Knudsen, J. & Preissner, R. 2009. SuperScent-a database of flavors and scents. Nucleic Acids Research, 37: 291-294. DOI: https://doi.org/10.1093/nar/gkn695

Effmert, U., Saschenbrecker, S., Ross, J., Negre, F., Fraser, C.M., Noel, J.P. & Piechulla, B. 2005. Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry, 66(11): 1211-1230. DOI: https://doi.org/10.1016/j.phytochem.2005.03.031

Farré-Armengol, G., Filella, I., Llusià, J. & Peñuelas, J. 2017. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules, 22(7): 1148-1159. DOI: https://doi.org/10.3390/molecules22071148

Gershenzon, J. & Dudareva, N. 2007. The function of terpene natural products in the natural world. Nature Chemical Biology, 3(7): 408-414. DOI: https://doi.org/10.1038/nchembio.2007.5

Grison-Pigé, L., Hossaert-McKey, M., Greeff, J.M. & Bessière, J.M. 2002. Fig volatile compounds a first comparative study. Phytochemistry, 61(1): 61-71. DOI: https://doi.org/10.1016/S0031-9422(02)00213-3

Hewson, H.J. 1988. Plant indumentum: A Handbook of Terminology. Australian Government Public Service, Melbourne. pp. 5-12.

Hills, H.G., Williams, N.H. & Dodson, C.H. 1972. Floral fragrances and isolating mechanisms in the genus Catasetum (Orchidaceae). Biotropica, 4(2): 61-76. DOI: https://doi.org/10.2307/2989728

Hirata, H., Ohnishi, T. & Watanabe, N. 2016. Biosynthesis of floral scent 2-phenylethanol in rose flowers. Bioscience, Biotechnology, and Biochemistry, 80(10): 1865-1873. DOI: https://doi.org/10.1080/09168451.2016.1191333

Huchelmann, A., Boutry, M. & Hachez, C. 2017. Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiology, 175(1): 6-22. DOI: https://doi.org/10.1104/pp.17.00727

James, D.G. 2003. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis.Journal of Chemical Ecology, 29(7): 1601-1609. DOI: https://doi.org/10.1023/A:1024270713493

Jayagoudar, S., Bhat, P. & Sachet Hegde, S.G. 2024. A systematic review of phytoconstituents and tissue culture studies of the genus Hoya R.Br. Micropropagation of Medicinal Plants, 2(7): 275-281. DOI: https://doi.org/10.2174/9789815238303124020019

Knudsen, J.T. & Tollsten, L. 1993. Trends in floral scent chemistry in pollination syndromes: Floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnean Society, 113(3): 263-284. DOI: https://doi.org/10.1111/j.1095-8339.1993.tb00340.x

Kobayashi, K. 2015. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis. Environmental Microbiology, 17(4): 1365-1376. DOI: https://doi.org/10.1111/1462-2920.12613

Kolb, D. & Müller, M. 2004. Light, conventional and environmental scanning electron microscopy of the trichomes of Cucurbita pepo subsp. pepo var. styriaca and histochemistry of glandular secretory products. Annals of Botany, 94(4): 515-526. DOI: https://doi.org/10.1093/aob/mch180

Konarska, A. & Masierowska, M. 2020. Structure of floral nectaries and female-biased nectar production in protandrous species Geranium macrorrhizum and Geranium phaeum. Protoplasma, 257(2): 501-523. DOI: https://doi.org/10.1007/s00709-019-01454-3

Koschier, E.H., Hoffmann, D. & Riefler, J. 2007. Influence of salicylaldehyde and methyl salicylate on post‐landing behaviour of Frankliniella occidentalis Pergande. Journal of Applied Entomology, 131(5): 362-367. DOI: https://doi.org/10.1111/j.1439-0418.2007.01191.x

Kowalkowska, A.K., Kozieradzka-Kiszkurno, M. & Turzyński, S. 2015. Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae). Plant Systematics and Evolution, 301(2): 609-622. DOI: https://doi.org/10.1007/s00606-014-1100-2

Kundan, M., Gani, U., Nautiyal, A.K. & Misra, P. 2019. Molecular approaches in Plant Biology and Environmental Challenge. In: Molecular approaches in Plant Biology and Environmental Challenge. S.P. Singh, S.K. Upadhyay, A. Pandey and S. Kumar (Eds.). Springer, Singapore. pp. 365-393. DOI: https://doi.org/10.1007/978-981-15-0690-1_17

Mileva, M., Ilieva, Y., Jovtchev, G., Gateva, S., Zaharieva, M.M., Georgieva, A. & Najdenski, H. 2021. Rose flowers A Delicate Perfume or a Natural Healer. Biomolecules, 11(1): 27-130. DOI: https://doi.org/10.3390/biom11010127

Mochizuki, K., Furukawa, S. & Kawakita, A. 2017. Pollinia transfer on moth legs in Hoya carnosa (Apocynaceae). American Journal of Botany, 104(6): 953-960. DOI: https://doi.org/10.3732/ajb.1700078

Monteiro, M.M. & Demarco, D. 2017. Corona development and the floral nectaries in Asclepiadeae (Asclepiadoideae, Apocynaceae). Acta Botanica Brasilica, 31(3): 420-432. DOI: https://doi.org/10.1590/0102-33062016abb0424

Nepi, M. 2007. Nectary structure and ultrastructure. In: Nectaries and Nectar. S.W. Nicolson, M. Nepi and E. Pacini (Eds.). Springer, The Netherlands. pp. 129-166. DOI: https://doi.org/10.1007/978-1-4020-5937-7_3

Noraini,T., Amirul-Aiman, M.J. & Ruzi, A.R. 2019. Anatomi dan Mikroskopik Tumbuhan. Penerbit Universiti Kebangsaan Malaysia, Bangi. pp. 11-15. (Malay).

Pacini, E. & Nepi, M. 2007. Nectar production and presentation. In: Nectaries and Nectar. S.W. Nicolson, M. Nepi & E. Pacini (Eds.). Springer, The Netherlands. pp. 167-214. DOI: https://doi.org/10.1007/978-1-4020-5937-7_4

Parker, D., Martinez, C., Stanley, C., Simmons, J. & McIntyre, I.M. 2004. The analysis of methyl salicylate and salicylic acid from Chinese herbal medicine ingestion. Journal of Analytical Toxicology, 28(3): 214-216. DOI: https://doi.org/10.1093/jat/28.3.214

Poinar, G. & Poinar, G. 2020. The antiquity of floral secretory tissues that provide today's fragrances. Historical Biology, 32(4): 494-499. DOI: https://doi.org/10.1080/08912963.2018.1502288

Puchtler, H., Sweat Waldrop, F., Conner, H.M. & Terry, M.S. 1968. Carnoy fixation: Practical and theoretical considerations. Histochemie, 16(4): 361-371. DOI: https://doi.org/10.1007/BF00306359

Ramya, H.G., Palanimuthu, V. & Rachna, S. 2013. An introduction to patchouli (Pogostemon cablin Benth.). A medicinal and aromatic plant: It’s importance to mankind. Agricultural Engineering International: CIGR Journal, 15(2): 243-250.

Rodda, M. & Simonsson, N. 2022. Contribution to a revision of Hoya (Apocynaceae: Asclepiadoideae) of Papuasia. Part II: Eight new species, one new subspecies. Blumea-Biodiversity, Evolution and Biogeography of Plants, 67(2): 139-155. DOI: https://doi.org/10.3767/blumea.2022.67.02.08

Rumaling, M.K., Fong, S.Y., Rao, P.V., Gisil, J., Sani, M.H.M. & Wan Saudi, W.S. 2024. Pharmacological properties of Hoya (Apocynaceae): A systematic review. Natural Product Research, 23(1): 1-17. DOI: https://doi.org/10.1080/14786419.2024.2319655

Spence, J. 2001. Plant Cell Biology. In: Plant Cell Biology. C. Hawes and B. Satiat-Jeunemaitre (Eds.). Oxford University Press, United Kingdom. pp. 189-206. DOI: https://doi.org/10.1093/oso/9780199638666.003.0009

Springob K, & Kutchan T.M. 2009. Plant-derived natural products. In: Plant-Derived Natural Products. A.E. Osbourn and V. Lanzotti (Eds.). Springer, New York. pp. 3-50. DOI: https://doi.org/10.1007/978-0-387-85498-4_1

Wiemer, A.P., More, M., Benitez-Vieyra, S., Cocucci, A.A., Raguso, R.A. & Sérsic, A.N. 2009. A Simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae). Plant Biology, 11(4):506-14. DOI: https://doi.org/10.1111/j.1438-8677.2008.00140.x

Woods, J.L., James, D.G., Lee, J.C. & Gent, D.H. 2011. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards. Experimental and Applied Acarology, 55(4): 401-416. DOI: https://doi.org/10.1007/s10493-011-9495-8

Xiang, L., Milc, J.A., Pecchioni, N. & Chen, L.Q. 2007. Genetic aspects of floral fragrance in plants. Biochemistry (Moscow), 72(4): 351-358. DOI: https://doi.org/10.1134/S0006297907040013

Yue, Y., Yu, R. & Fan, Y. 2015. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics, 16(1); 1-23. DOI: https://doi.org/10.1186/s12864-015-1653-7

Published

25-12-2024

How to Cite

Basir, S., Talip, N. ., Bunawan, H., & Rahman, R. A. (2024). Anatomical and Histochemical Analysis of Hoya pentaphlebia MERR. Flower: Insights into Structure and Chemical Composition. Malaysian Applied Biology, 53(6), 105–114. https://doi.org/10.55230/mabjournal.v53i6.14

Issue

Section

Research Articles

Most read articles by the same author(s)