A Review of The Effects Of Light-Emitting Diodes (LEDs) on The Growth of Sunflower Microgreens and Their Nutritional Potential

https://doi.org/10.55230/mabjournal.v53i5.3033

Authors

  • Sreeramanan Subramaniam Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, 11900, Penang, Malaysia; School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, 11800 Penang, Malaysia
  • Hong Lim Chew Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas, 11900, Penang, Malaysia

Keywords:

Sunflower, Microgreen, LED, Human health

Abstract

Sunflower (Helianthus annuus) microgreens have become known as a potent source of essential nutrients and bioactive compounds with numerous health benefits. The microgreens industry has traditionally favored popular microgreens from the Brassicaceae family such as kale, rocket, and broccoli. Sunflower microgreens are characterized by their richness in vitamins, minerals, antioxidants, and phytochemicals that contribute significantly to a nutritious diet. However, their nutrient content can be influenced by various factors, including growing conditions and lighting. Light-emitting diodes (LEDs) offer precise control of light spectrum, light intensity, and lighting duration, enabling customized lighting systems optimized for growing sunflower microgreens. Pre-treatment and optimal harvest timing affect the quality and yield of microgreens, and sunflower microgreens are no exception. Accordingly, sunflower microgreens are typically harvested within 7 days of cultivation, making them ideal for mass production. The use of LED technology in the cultivation of microgreens offers the opportunity to further enhance their nutritional value and therapeutic potential. This review provides an overview of the benefits of sunflowers, sunflower microgreens, pre-treatments, and the ideal harvest period. The potential improvements from LED lighting are discussed and its impact on human health is explained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adeleke, B.S. & Babalola, O.O. 2020. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Science & Nutrition, 8(9): 4666-4684. DOI: https://doi.org/10.1002/fsn3.1783

Aloo, S.O., Ofosu, F.K., Kilonzi, S.M., Shabbir, U. & Oh, D.H. 2021. Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients, 13(8): 2882. DOI: https://doi.org/10.3390/nu13082882

Bassegio, D., Zanotto, M.D., Santos, R.F., Werncke, I., Dias, P.P. & Olivo, M. 2016. Oilseed crop crambe as a source of renewable energy in Brazil. Renewable and Sustainable Energy Reviews, 66: 311-321. DOI: https://doi.org/10.1016/j.rser.2016.08.010

Berba, K. & Uchanski, M.E. 2012. Postharvest Physiology of Microgreens. Journal of Young Investigators, 24(1): 1-5.

Bhaswant, M., Shanmugam, D.K., Miyazawa, Taiki, Abe, C. & Miyazawa, Teruo. 2021. Microgreens-A comprehensive review of bioactive molecules and health benefits. Molecules, 28(2): 867. DOI: https://doi.org/10.3390/molecules28020867

Bian, Z., Jiang, N., Grundy, S. & Lu, C. 2018. Uncovering LED light effects on plant growth: New angles and perspectives - LED light for improving plant growth, nutrition and energy-use efficiency. Acta Horticulturae, 1227: 491-498. DOI: https://doi.org/10.17660/ActaHortic.2018.1227.62

Božić, A. & Milošević, S. 2020. Microgreens in gastronomic offer of Belgrade restaurants. Tourism International Scientific Conference Vrnjačka Banja, 5(1): 94-111.

Chen, X., Yang, Q., Song, W., Wang, L., Guo, W. & Xue, X. 2017. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223: 44-52. DOI: https://doi.org/10.1016/j.scienta.2017.04.037

Ciuta, F., Arghir, L.D., Tudor, C.A. & Viorica, L.L. 2020. Research on microgreens farming in vertical hydroponic system. Journal of Horticulture, Forestry and Biotechnology, 24(4): 27-34.

Dalal, N., Siddiqui, S. & Phogat, N. 2020. Post-harvest quality of sunflower microgreens as influenced by organic acids and ethanol treatment. Journal of Food Processing and Preservation, 44(9): e14678. DOI: https://doi.org/10.1111/jfpp.14678

Di Bella, M.C., Niklas, A., Toscano, S., Picchi, V., Romano, D., Lo Scalzo, R. & Branca, F. 2020. Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, Microgreens and Baby Leaves. Agronomy, 10(6): 782. DOI: https://doi.org/10.3390/agronomy10060782

Di Gioia, F., Renna, M. & Santamaria, P. 2017. Sprouts, Microgreens and "Baby Leaf" Vegetables, in: Yildiz, F., Wiley, R.C. (Eds.), Minimally Processed refrigerated fruits and vegetables, food engineering series. Springer US, Boston, MA. pp. 403-432. DOI: https://doi.org/10.1007/978-1-4939-7018-6_11

Dos Santos, I.F., Dos Santos, A.M.P., Barbosa, U.A., Lima, J.S., Dos Santos, D.C. & Matos, G.D. 2013. Multivariate analysis of the mineral content of raw and cooked okra (Abelmoschus esculentus L.). Microchemical Journal, 110: 439-443. DOI: https://doi.org/10.1016/j.microc.2013.05.008

Ebert, A.W. 2012. Sprouts, microgreens, and edible flowers: the potential for high value specialty produce in Asia. In: High Value Vegetables in Southeast Asia: Production, Supply and Demand. Shanhua, Tainan: AVRDC - The World Vegetable Center, Chiang Mai, Thailand. pp. 216-227.

Enebe, M.C. & Babalola, O.O. 2018. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied Microbiology and Biotechnology, 102(18): 7821-7835. DOI: https://doi.org/10.1007/s00253-018-9214-z

Eryilmaz, T. & Yesilyurt, M.K. 2016. Influence of blending ratio on the physicochemical properties of safflower oil methyl ester-safflower oil, safflower oil methyl ester-diesel and safflower oil-diesel. Renewable Energy, 95: 233-247. DOI: https://doi.org/10.1016/j.renene.2016.04.009

Germ, M., Stibilj, V., Šircelj, H., Jerše, A., Kroflič, A., Golob, A. & Maršić, N.K. 2019. Biofortification of common buckwheat microgreens and seeds with different forms of selenium and iodine. Journal of the Science of Food and Agriculture, 99(9): 4353-4362. DOI: https://doi.org/10.1002/jsfa.9669

Ghoora, M.D., Babu, D.R. & Srividya, N. 2020a. Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. Journal of Food Composition and Analysis, 91: 103495. DOI: https://doi.org/10.1016/j.jfca.2020.103495

Ghoora, M.D., Haldipur, A.C. & Srividya, N. 2020b. Comparative evaluation of phytochemical content, antioxidant capacities and overall antioxidant potential of select culinary microgreens. Journal of Agriculture and Food Research, 2: 100046. DOI: https://doi.org/10.1016/j.jafr.2020.100046

Han, T., Vaganov, V., Cao, S., Li, Q., Ling, L., Cheng, X., Peng, L., Zhang, C., Yakovlev, A.N., Zhong, Y. & Tu, M. 2017. Improving "color rendering" of LED lighting for the growth of lettuce. Scientific Reports, 7(1): 45944. DOI: https://doi.org/10.1038/srep45944

Harakotr, B., Srijunteuk, S., Rithichai, P. & Tabunhan, S. 2019. Effects of Light-Emitting Diode light irradiance levels on yield, antioxidants and antioxidant capacities of indigenous vegetable microgreens. Science & Technology Asia, 24: 59-66.

Hernández, R. & Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121: 66-74. DOI: https://doi.org/10.1016/j.envexpbot.2015.04.001

Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Van Ieperen, W. & Harbinson, J. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61(11): 3107-3117. DOI: https://doi.org/10.1093/jxb/erq132

Huan, Z., Li-Li, Z., Wei, L., Ze-nan, X., Dan, Z. & Jin, C. 2012. Effects of Photoperiod Under Red LED on Growth and Quality of Sunflower Sprouts. Acta Horticulturae Sinica, 39(2): 297-304.

Hung, C.D., Hong, C.-H., Jung, H.-B., Kim, S.-K., Ket, N.V., Nam, M.-W., Choi, D.-H. & Lee, H.-I. 2015. Growth and morphogenesis of encapsulated strawberry shoot tips under mixed LEDs. Scientia Horticulturae, 194: 194-200. DOI: https://doi.org/10.1016/j.scienta.2015.08.016

Islam, M.A., Kuwar, G., Clarke, J.L., Blystad, D.-R., Gislerød, H.R., Olsen, J.E. & Torre, S. 2012. Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Scientia Horticulturae, 147: 136-143. DOI: https://doi.org/10.1016/j.scienta.2012.08.034

Johkan, M., Shoji, K., Goto, F., Hahida, S. & Yoshihara, T. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany, 75: 128-133. DOI: https://doi.org/10.1016/j.envexpbot.2011.08.010

Johkan, M., Shoji, K., Goto, F., Hashida, S. & Yoshihara, T. 2010. Blue Light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience, 45(12): 1809-1814. DOI: https://doi.org/10.21273/HORTSCI.45.12.1809

Kamal, K.Y., Khodaeiaminjan, M., El-Tantawy, A.A., Moneim, D.A., Salam, A.A., Ash-shormillesy, S.M.A.I., Attia, A., Ali, M.A.S., Herranz, R., El-Esawi, M.A., Nassrallah, A.A. & Ramadan, M.F. 2020. Evaluation of growth and nutritional value of Brassica microgreens grown under red, blue and green LEDs combinations. Physiologia Plantarum, 169(4): 625-638. DOI: https://doi.org/10.1111/ppl.13083

Karim, Md.N., Sani, Md.N.H., Uddain, J., Azad, M.O.K., Kabir, Md.S., Rahman, M.S., Choi, K.Y. & Naznin, M.T. 2020. Stimulatory Effect of seed priming as pretreatment factors on germination and yield performance of yard long bean (Vigna unguiculata). Horticulturae, 6(4): 104. DOI: https://doi.org/10.3390/horticulturae6040104

Kasajima, S., Inoue, N., Mahmud, R., Fujita, K. & Kato, M. 2007. Effect of light quality on developmental rate of wheat under continuous light at a constant temperature. Plant Production Science, 10(3): 286-291. DOI: https://doi.org/10.1626/pps.10.286

Kim, H.-H., Wheeler, R., Sager, J. & Norikane, J. 2005. Photosynthesis of lettuce exposed to different short term light qualities. Environment Control in Biology, 43(2): 113-119. DOI: https://doi.org/10.2525/ecb.43.113

Kim, S.-J., Hahn, E.-J., Heo, J.-W. & Paek, K.-Y. 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1-2): 143-151. DOI: https://doi.org/10.1016/j.scienta.2003.10.003

Krstić, M., Ovuka, J., Radić, V., Gvozdenac, S., Miklič, V., Mladenov, V., Banjac, B. & Kukrić, T. 2022. Seed size and substrate effect on seed germination of inbred sunflower lines. Presented at the 20th International sunflower conference, Novi Sad, Serbia, pp. 272-278.

Kumar, N. & Goel, N. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24: e00370. DOI: https://doi.org/10.1016/j.btre.2019.e00370

Kyriacou, M.C., Rouphael, Y., Di Gioia, F., Kyratzis, A., Serio, F., Renna, M., De Pascale, S. & Santamaria, P. 2016. Micro-scale vegetable production and the rise of microgreens. Trends in Food Science & Technology, 57: 103-115. DOI: https://doi.org/10.1016/j.tifs.2016.09.005

Lee, M.-J., Son, K.-H. & Oh, M.-M. 2016. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Horticulture, Environment, and Biotechnology, 57(2): 139-147. DOI: https://doi.org/10.1007/s13580-016-0133-6

Li, H., Xu, Z. & Tang, C. 2010. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Culture,103: 155-163. DOI: https://doi.org/10.1007/s11240-010-9763-z

Li, Q. & Kubota, C. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1): 59-64. DOI: https://doi.org/10.1016/j.envexpbot.2009.06.011

Lin, K.-H., Huang, M.-Y., Huang, W.-D., Hsu, M.-H., Yang, Z.-W. & Yang, C.-M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150: 86-91. DOI: https://doi.org/10.1016/j.scienta.2012.10.002

Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O. & Zamfirache, M.-M. 2017. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules, 22(12): 2111. DOI: https://doi.org/10.3390/molecules22122111

Loconsole, D., Cocetta, G., Santoro, P. & Ferrante, A. 2019. Optimization of LED lighting and quality evaluation of romaine lettuce grown in an innovative indoor cultivation system. Sustainability, 11(3): 841. DOI: https://doi.org/10.3390/su11030841

Ma, G., Zhang, L., Kato, M., Yamawaki, K., Kiriiwa, Y., Yahata, M., Ikoma, Y. & Matsumoto, H. 2015. Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. Postharvest Biology and Technology, 99: 99-104. DOI: https://doi.org/10.1016/j.postharvbio.2014.08.002

Ma, X., Wang, Y., Liu, M., Xu, J. & Xu, Z. 2015. Effects of green and red lights on the growth and morphogenesis of potato (Solanum tuberosum L.) plantlets in vitro. Scientia Horticulturae, 190: 104-109. DOI: https://doi.org/10.1016/j.scienta.2015.01.006

Maathuis, F.J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3): 250-258. DOI: https://doi.org/10.1016/j.pbi.2009.04.003

Martínez-Ballesta, M.C., Dominguez-Perles, R., Moreno, D.A., Muries, B., Alcaraz-López, C., Bastías, E., García-Viguera, C. & Carvajal, M. 2010. Minerals in plant food: effect of agricultural practices and role in human health. A review. Agronomy for Sustainable Development, 30(2): 295-309. DOI: https://doi.org/10.1051/agro/2009022

Massa, G.D., Kim, H.-H., Wheeler, R.M. & Mitchell, C.A. 2008. Plant Productivity in Response to LED Lighting. HortScience, 43(7): 1951-1956. DOI: https://doi.org/10.21273/HORTSCI.43.7.1951

Maurya, V.K., Shakya, A., Aggarwal, M., Gothandam, K.M., Bohn, T. & Pareek, S. 2021. Fate of β-Carotene within Loaded Delivery Systems in Food: State of Knowledge. Antioxidants, 10(3): 426. DOI: https://doi.org/10.3390/antiox10030426

Mir, S.A., Shah, M.A. & Mir, M.M. 2017. Microgreens: Production, shelf life, and bioactive components. Critical Reviews in Food Science and Nutrition, 57(12): 2730-2736. DOI: https://doi.org/10.1080/10408398.2016.1144557

Miyazawa, Taiki, Burdeos, G.C., Itaya, M., Nakagawa, K. & Miyazawa, Teruo. 2019. Vitamin E: Regulatory Redox Interactions. IUBMB Life, 71(4): 430-441. DOI: https://doi.org/10.1002/iub.2008

Murphy, C.J., Llort, K.F. & Pill, W.G. 2010. Factors Affecting the growth of microgreen table beet. international journal of vegetable science, 16(3): 253-266. DOI: https://doi.org/10.1080/19315261003648241

Nhut, D.T., Takamura, T., Watanabe, H. & Tanaka, M. 2001. Efficiency Of a novel culture system by using light-emitting diode (led) on in vitro and subsequent growth of micropropagated banana plantlets. In International Symposium on Acclimatization and Establishment of Micropropagated Plants 616, pp. 121-127. DOI: https://doi.org/10.17660/ActaHortic.2003.616.10

Nhut, Duong Tan, Takamura, T., Watanabe, H., Okamoto, K. & Tanaka, M. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture, 73: 43-52. DOI: https://doi.org/10.1023/A:1022638508007

Olle, M. & Viršile, A. 2013. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22(2): 223-234. DOI: https://doi.org/10.23986/afsci.7897

Pająk, P., Socha, R., Gałkowska, D., Rożnowski, J. & Fortuna, T. 2014. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 143: 300-306. DOI: https://doi.org/10.1016/j.foodchem.2013.07.064

Paradiso, V.M., Castellino, M., Renna, M., Gattullo, C.E., Calasso, M., Terzano, R., Allegretta, I., Leoni, B., Caponio, F. & Santamaria, P. 2018. Nutritional characterization and shelf-life of packaged microgreens. Food & Function, 9(11): 5629-5640. DOI: https://doi.org/10.1039/C8FO01182F

Paradiso, V.M., Castellino, M., Renna, M., Santamaria, P. & Caponio, F. 2020. Setup of an Extraction method for the analysis of carotenoids in microgreens. Foods, 9(4): 459. DOI: https://doi.org/10.3390/foods9040459

Pinto, E., Almeida, A.A., Aguiar, A.A. & Ferreira, I.M.P.L.V.O. 2015. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis, 37: 38-43. DOI: https://doi.org/10.1016/j.jfca.2014.06.018

Rehman, M., Ullah, S., Bao, Y., Wang, B., Peng, D. & Liu, L. 2017. Light-emitting diodes: whether an efficient source of light for indoor plants? Environmental Science and Pollution Research, 24(32): 24743-24752. DOI: https://doi.org/10.1007/s11356-017-0333-3

Renna, M. & Paradiso, V.M. 2020. Ongoing research on microgreens: Nutritional properties, shelf-life, sustainable production, innovative growing and processing approaches. Foods, 9(6): 826. DOI: https://doi.org/10.3390/foods9060826

Renna, M., Di Gioia, F., Leoni, B., Mininni, C. & Santamaria, P., 2017. Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. Journal of Culinary Science & Technology, 15(2): 126-142. DOI: https://doi.org/10.1080/15428052.2016.1225534

Saini, R.K., Ko, E.Y. & Keum, Y.-S. 2017. Minimally processed ready-to-eat baby-leaf vegetables: Production, processing, storage, microbial safety, and nutritional potential. Food Reviews International, 33(6): 644-663. DOI: https://doi.org/10.1080/87559129.2016.1204614

Samuolienė, G., Brazaitytė, A., Urbonavičiūtė, A., Šabajevienė, G. & Duchovskis, P. 2010. The effect of red and blue light component on the growth and development of frigo strawberries. Žemdirbystė (Agriculture), 97(2): 99-104.

Scherz, H. & Kirchhoff, E. 2006. Trace elements in foods: Zinc contents of raw foods-A comparison of data originating from different geographical regions of the world. Journal of Food Composition and Analysis, 19(5): 420-433. DOI: https://doi.org/10.1016/j.jfca.2005.10.004

Sharma, S., Dhingra, P. & Koranne, S. 2020. Microgreens: Exciting new food for 21st Century. Ecology Environment and Conservation, 26: S248-S251.

Sharma, S., Shree, B., Sharma, D., Kumar, S., Kumar, V., Sharma, R. & Saini, R. 2022. Vegetable microgreens: The gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Research International, 15: 111038. DOI: https://doi.org/10.1016/j.foodres.2022.111038

Singh, D., Basu, C., Meinhardt-Wollweber, M. & Roth, B. 2015. LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49: 139-147. DOI: https://doi.org/10.1016/j.rser.2015.04.117

Szewczyk, K., Chojnacka, A. & Górnicka, M. 2021. Tocopherols and Tocotrienols-Bioactive detary compounds; what is certain, what is doubt? International Journal of Molecular Sciences, 22(12): 6222. DOI: https://doi.org/10.3390/ijms22126222

Tan, L., Nuffer, H., Feng, J., Kwan, S.H., Chen, H., Tong, X. & Kong, L. 2020. Antioxidant properties and sensory evaluation of microgreens from commercial and local farms. Food Science and Human Wellness, 9(1): 45-51. DOI: https://doi.org/10.1016/j.fshw.2019.12.002

Terfa, M.T., Solhaug, K.A., Gislerød, H.R., Olsen, J.E. & Torre, S. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening. Physiologia Plantarum, 148(1): 146-159. DOI: https://doi.org/10.1111/j.1399-3054.2012.01698.x

Theparod, T. & Harnsoongnoen, S. 2022. Narrow-band light-emitting diodes (LEDs) effects on sunflower (Helianthus annuus) sprouts with remote monitoring and recording by internet of things device. Sensors, 22(4): 1503. DOI: https://doi.org/10.3390/s22041503

Thompson, B., Amoroso, L., C.A.B. International, Food and Agriculture Organization of the United Nations (Eds.), 2014. Improving diets and nutrition: food-based approaches. CABI, Wallingford, Oxfordshire, Rome, Italy. 403 pp.

Treadwell, D., Hochmuth, R., Landrum, L. & Laughlin, W. 2020. Microgreens: A new specialty crop: HS1164, rev. 9/2020. Edis, 2020(5). DOI: https://doi.org/10.32473/edis-hs1164-2020

Tzortzakis, N.G. 2009. Effect of pre-sowing treatment on seed germination and seedling vigour in endive and chicory. Horticultural Science, 36(3): 117-125. DOI: https://doi.org/10.17221/28/2008-HORTSCI

Vilvert, E., Lana, M., Zander, P. & Sieber, S. 2018. Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems, 159: 103-110. DOI: https://doi.org/10.1016/j.agsy.2017.10.014

Weber, C.F. 2017. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Frontiers in Nutrition, 4: 7. DOI: https://doi.org/10.3389/fnut.2017.00007

Xiao, Z., Lester, G.E., Park, E., Saftner, R.A., Luo, Y. & Wang, Q. 2015. Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biology and Technology, 110: 140-148. DOI: https://doi.org/10.1016/j.postharvbio.2015.07.021

Xiao, Z., Luo, Y., Lester, G.E., Kou, L., Yang, T. & Wang, Q. 2014. Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT - Food Science and Technology, 55(2): 551-558. DOI: https://doi.org/10.1016/j.lwt.2013.09.009

Xu, H., Xu, Q., Li, F., Feng, Y., Qin, F. & Fang, W. 2012. Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Scientia Horticulturae, 148: 190-196. DOI: https://doi.org/10.1016/j.scienta.2012.06.044

Yanagi, T., Okamoto, K. & Takita, S. 1996. Effect of blue and red light intensity on photosynthetic rate of strawberry leaves. Acta Horticulturae, 440: 371-376. DOI: https://doi.org/10.17660/ActaHortic.1996.440.65

Ying, Q., Kong, Y. & Zheng, Y. 2020. Applying blue light alone, or in combination with far-red light, during nighttime increases elongation without compromising yield and quality of indoor-grown microgreens. HortScience, 55(6): 876-881. DOI: https://doi.org/10.21273/HORTSCI14899-20

Zhang, C., Liu, J., Zhang, Y., Cai, X., Gong, P., Zhang, J., Wang, T., Li, H. & Ye, Z. 2011. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reports, 30(3): 389-398. DOI: https://doi.org/10.1007/s00299-010-0939-0

Zhang, X., Bian, Z., Yuan, X., Chen, X. & Lu, C. 2020. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology, 99: 203-216. DOI: https://doi.org/10.1016/j.tifs.2020.02.031

Published

30-11-2024

How to Cite

Subramaniam, S., & Chew, H. L. (2024). A Review of The Effects Of Light-Emitting Diodes (LEDs) on The Growth of Sunflower Microgreens and Their Nutritional Potential. Malaysian Applied Biology, 53(5), 1–13. https://doi.org/10.55230/mabjournal.v53i5.3033

Funding data

Most read articles by the same author(s)