The Effects Of 2,4-D, BAP, and Sucrose Concentrations in The Callus Induction of White (Clitoria ternatea var. Albiflora) and Blue Butterfly Pea (Clitoria ternatea)

https://doi.org/10.55230/mabjournal.v53i4.3087

Authors

  • Tengku Nurul Amira Aqma Tengku Zakaria School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Hui Shi Tan School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Zurina Hassan Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Sreeramanan Subramaniam School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Bee Lynn Chew School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Keywords:

Butterfly pea, friable callus, sucrose, 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP)

Abstract

The blue butterfly pea (Clitoria ternatea) and white butterfly pea (Clitoria ternatea var. Albiflora) belong to the Fabaceae family. Both are locally known as “bunga telang” and native to the Southeast Asian regions. The blue flowered variety is traditionally used to treat headaches, fever, and diabetes and is renowned scientifically for its memory-enhancing properties due to the presence of novel pentacyclic triterpenoids. However, farming of C. ternatea is challenged by inconsistent yields of novel secondary metabolites, especially under changing environmental conditions. Callus and cell suspension cultures, on the other hand, offer an alternative for the consistent production of these metabolites. The current study aims to optimize the treatments of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), and sucrose concentrations for friable callus formation from seedling explants. Sterile cotyledon explants of in vitro seedlings from both types of butterfly pea were subjected to half-strength MS medium supplemented with different concentrations and combinations of 2,4-D and BAP, with sucrose at 15 g/L and 30 g/L. The highest friable callus fresh weight from the white butterfly pea explants (0.064 ± 0.010 g) was achieved in treatments of 0.40 mg/L 2,4-D and 0.50 mg/L BAP. In contrast, the highest fresh weight of friable callus for the blue variety (0.025 ± 0.016 g) was induced in 0.25 mg/L of 2,4-D. Both varieties showed the highest friable callus weight in 15 g/L sucrose supplemented with 1.00 mg/L of 2,4-D (0.146 ± 0.032 g) and 0.25 mg/L of 2,4-D (0.245 ± 0.075 g) for the white and blue variety respectively. The morphology of calli for both varieties were yellowish, watery, and sticky. This study provides an essential basis the establishment of cell suspension cultures, as an efficient alternative to harness the secondary metabolites associated with the mammalian neuroprotective properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al-Asmari, A.K., Abbasmanthiri, R., Osman, N.M.A. & Al-Asmari, B.A. 2020. Endangered Saudi Arabian plants having ethnobotanical evidence as antidotes for scorpion envenoming. Clinical Phytoscience, 6(1): 1-13. DOI: https://doi.org/10.1186/s40816-020-00196-7

Al-Snafi, A.E. 2016. Pharmacological importance of Clitoria ternatea-A review. IOSR Journal of Pharmacy, 6(3): 68-83.

Barreto Ferreira, R.I. 2018. Studies on the Development of Callus Cultures of Cannabis sativa L. Regarding Plant Regeneration (Master). Technical University of Dortmund.

Bernabé-Antonio, A., Sánchez-Sánchez, A., Romero-Estrada, A., Meza-Contreras, J. C., Silva-Guzmán, J.A., Fuentes-Talavera, F.J., Hurtado-Díaz, I., Alvarez, L. & Cruz-Sosa, F. 2021. Establishment of a cell suspension culture of Eysenhardtia platycarpa: phytochemical screening of extracts and evaluation of antifungal activity. Plants, 10(2): 414. DOI: https://doi.org/10.3390/plants10020414

Chaireok, S., Thammasiri, K. & Meesawat, U. 2015. Optimization of protocorm-like bodies tissue culture and clonal propagation conditions for endangered lady's slipper orchid (Paphiopedilum niveum (Rchb. f.) Stein). Pakistan Journal of Biotechnology, 12(2): 105-114.

Chan, L.K., Nallammai, S. & Boey, P.L. 2010. Production of artemisinin from cell suspension culture of Artemisia annua L. Asia Pacific Journal of Molecular Biology and Biotechnology, 18(1): 139-141.

Chan, Y.L., Bong, F.J, Subramaniam, S. & Chew, B.L. 2017. The effects of indole-3-butyric acid and 1-naphthaleneacetic acid on the induction of roots from Clitoria ternatea L. Journal of Sustainability Science and Management, 12(2): 63-70.

Damodaran, T., Cheah, P.S., Murugaiyah, V. & Hassan, Z. 2020. The nootropic and anticholinesterase activities of Clitoria ternatea Linn. root extract: potential treatment for cognitive decline. Neurochemistry International, 139: p.104785. DOI: https://doi.org/10.1016/j.neuint.2020.104785

Dighe, N.S., Pattan, S.R., Nirmal, S.A., Dake, S.G., Shelar, M.U., Dhasade, V.V. & Musmade, D.S. 2009. A review on phytochemical and pharmacological profile of Clitoria ternatea, Pharmacologyonline, 3: 204-210.

Divya, A., Anbumalarmathi, J. & Sharmili, S.A. 2018. Phytochemical analysis, antimicrobial and antioxidant activity of Clitoria ternatea blue and white flowered leaves. Advances in Research, 14(5): 1-13. DOI: https://doi.org/10.9734/AIR/2018/39030

Doffek, B., Huang, Y., Huang, Y.H., Chan, L.Y., Gilding, E.K., Jackson, M.A. & Craik, D.J. 2022. Comparative analysis of cyclotide-producing plant cell suspensions presents opportunities for cyclotide plant molecular farming. Phytochemistry, 195: 113053. DOI: https://doi.org/10.1016/j.phytochem.2021.113053

Goldberg, E. 2016. The Science Behind This Mesmerizing Color-Changing Tea. [WWW Document]. bonapetit. URL https://www.bonappetit.com/drinks/non-alcoholic/article/butterfly-pea-flower-color-changing-tea (accessed 3.25.24)

Gupta, G.K., Chahal, J. & Bhatia, M. 2010. Clitoria ternatea (L.): Old and new aspects. Journal of Pharmacy Research, 3(11): 2610-2614.

Hande, V.P., Chauhan, R.M., Dapke, J.S. & Vanave, P.B. 2015. Factors affecting callus induction in mothbean [Vigna aconitifolia (Jacq.). Current Trends in Biotechnology and Pharmacy, 9(3): 251-258.

Ikeuchi, M., Sugimoto, K. & Iwase, A. 2013. Plant callus: mechanisms of induction and repression. The Plant Cell, 25(9): 3159-3173. DOI: https://doi.org/10.1105/tpc.113.116053

Jamil, N. & Pa'ee, F. 2018. Antimicrobial activity from leaf, flower, stem, and root of Clitoria ternatea a review. AIP Conference Proceedings, 2002(1): 020044. DOI: https://doi.org/10.1063/1.5050140

Jayaraman, S., Daud, N.H., Halis, R. & Mohamed, R. 2014. Effects of plant growth regulators, carbon sources and pH values on callus induction in Aquilaria malaccensis leaf explants and characteristics of the resultant calli. Journal of Forestry Research, 25: 535-540. DOI: https://doi.org/10.1007/s11676-014-0492-8

Khatoon, S., Irshad, S., Rawat, A.K.S. & Misra, P.K. 2015. Comparative pharmacognostical studies of blue and white flower varieties of Clitoria ternatea L. Journal of Pharmacognosy and Natural Products, 1(1): 1. DOI: https://doi.org/10.4172/2472-0992.1000109

Konate, S., Kone, M., Kouakou, H.T., Kouadio, J.Y. & Zouzou, M. 2013. Callus induction and proliferation from cotyledon explants in bambara groundnut. African Crop Science Journal, 21(3): 255-263.

Kumar, D. & Dhobi, M. 2016. Antianxiety and antioxidant profile of blue and white variety of Clitoria ternatea L. Indian Journal of Research in Pharmacy and Biotechnology, 4(3): 90.

Kumar, D. & Dhobi, M. 2017. Screening antianxiety and antioxidant profile of stems and leaves of blue variety of Clitoria ternatea L. Indian Journal of Pharmaceutical Sciences, 79(6): 1022. DOI: https://doi.org/10.4172/pharmaceutical-sciences.1000322

Kumar, R. & Anju, V.S. 2017. Phytochemical and antibacterial activities of crude leaf and root extracts of Clitoria ternatea varieties (Fabaceae). Journal of Pharmacognosy and Phytochemistry, 6(6): 1104-1108.

Lara, E.Y.C., Imakawa, A.M., Da Silva, D. & Sampaio, P.D.T.B. 2022. In vitro callus induction from different explants of Senna alata (L.) Robx. (FABACEAE). Advances in Forestry Science, 9(1): 1653-1660. DOI: https://doi.org/10.34062/afs.v9i1.12928

Lee, R.X., Hassan, Z., Subramaniam, S. & Chew, B.L. 2021. Adventitious root cultures of Clitoria ternatea L. and its potential as a memory enhancer alternative. Plant Biotechnology Reports, 15: 163-176. DOI: https://doi.org/10.1007/s11816-021-00664-7

Liang, S., He, Y., Zheng, H., Yuan, Q., Zhang, F. & Sun, B. 2019. Effects of sucrose and browning inhibitors on callus proliferation and anti-browning of chinese kale. IOP Conference Series: Earth and Environmental Science, 252(2): 022018. DOI: https://doi.org/10.1088/1755-1315/252/2/022018

Luo, W.G., Liang, Q.W., Su, Y., Huang, C., Mo, B.X., Yu, Y. & Xiao, L.T. 2023. Auxin inhibits chlorophyll accumulation through ARF7-IAA14-mediated repression of chlorophyll biosynthesis genes in Arabidopsis. Frontiers in Plant Science, 14: 1172059. DOI: https://doi.org/10.3389/fpls.2023.1172059

Majda, M. & Robert, S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences, 19(4): 951. DOI: https://doi.org/10.3390/ijms19040951

Mello, M.O., Dias, C.T.S., Amaral, A.F.C. & Melo, M. 2001. Growth of Bauhinia forficata Link, Curcuma zedoaria Roscoe and Phaseolus vulgaris L. cell suspension cultures with carbon sources. Scientia Agricola, 58: 481-485. DOI: https://doi.org/10.1590/S0103-90162001000300007

Mishra, A.K., Singh, J. & Tiwari, K.N. 2019. In Vitro Regeneration of Clitoria ternatea (L.) from Nodal Explant. International Journal on Emerging Technologies, 10(1): 35-41.

Mohamed, N. & Taha, R.M. 2011. Plant regeneration of Clitoria ternatea from leaf explants cultured in vitro. Journal of Food, Agriculture & Environment, 9(3&4): 268-270.

Mukherjee, P.K., Kumar, V. & Houghton, P.J. 2008. Screening of Indian medicinal plants for acetyl cholinesterase inhibitory activity. Phytotherapy Research, 21, 1142-1145. DOI: https://doi.org/10.1002/ptr.2224

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3): 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nhan, N.H. & Loc, N.H. 2017. Production of eurycomanone from cell suspension culture of Eurycoma longifolia. Pharmaceutical Biology, 55(1): 2234-2239. DOI: https://doi.org/10.1080/13880209.2017.1400077

Normasari, R., Arumingtyas, E.L., Retnowati, R. & Widoretno, W. 2023. The combination effect of auxin and cytokinin on callus induction of patchouli (Pogostemon cablin Benth.) from leaf explants. In: 3rd International Conference on Biology, Science and Education (IcoBioSE 2021). Atlantis Press. pp. 551-557. DOI: https://doi.org/10.2991/978-94-6463-166-1_66

Park, J.S., Choi, Y. & Choi, H.K. 2023. Uncovering transcriptional reprogramming during callus development in soybean: insights and implications. Frontiers in Plant Science, 14: 1239917. DOI: https://doi.org/10.3389/fpls.2023.1239917

Rai, K.S. 2010. Neurogenic potential of Clitoria ternatea aqueous root extract - a basis for enhancing learning and memory. World Academy of Science, Engineering and Technology, 46: 237-242.

Rai, M.K., Rathour, R., Behera, S., Kaushik, S. & Naik, S.K. 2022. Encapsulation technology: An assessment of its role in in vitro conservation of medicinal and threatened plant species, In: Agricultural Biotechnology. Latest Research and Trends. D. Kumar Srivastava, A. Kumar Thakur, and P. Kumar (Eds.). Springer Nature Singapore, Singapore. pp. 103-128. DOI: https://doi.org/10.1007/978-981-16-2339-4_5

Rajaram, K., Moushmi, M., Velayutham Dass Prakash, M., Kumpati, P., Ganasaraswathi, M. & Sureshkumar, P.J.A.B. 2013. Comparative bioactive studies between wild plant and callus culture of Tephrosia tinctoria Pers. Applied Biochemistry and Biotechnology, 171: 2105-2120. DOI: https://doi.org/10.1007/s12010-013-0444-3

Rakesh, B. & Praveen, N. 2022. Establishment of Mucuna pruriens (L.) DC. callus and optimization of cell suspension culture for the production of anti-Parkinson's drug: L-DOPA. Journal of Applied Biology and Biotechnology, 10(5): 125-135. DOI: https://doi.org/10.7324/JABB.2022.100516

Ribeiro, I.G., Castro, T.C.D., Coelho, M.G.P. & Albarello, N. 2021. Effects of different factors on friable callus induction and establishment of cell suspension culture of Hovenia dulcis (Rhamnaceae). Rodriguésia, 72: e00102020. DOI: https://doi.org/10.1590/2175-7860202172105

Sari, Y.P., Kusumawati, E., Saleh, C., Kustiawan, W. & Sukartingsih, S. 2018. Effect of sucrose and plant growth regulators on callogenesis and preliminary secondary metabolic of different explant Myrmecodia tuberosa. Nusantara Bioscience, 10(3): 183-192. DOI: https://doi.org/10.13057/nusbiosci/n100309

Senthil, K. 2020. Establishment of callus and cell suspension culture of Sophora alopecuroides Linn. for the production of oxymatrine. Journal of Phytology, 12: 35-39. DOI: https://doi.org/10.25081/jp.2020.v12.6308

Setiawati, T., Arofah, A.N., Nurzaman, M., Annisa, A., Mutaqin, A.Z. & Hasan, R. 2023. Effect of sucrose as an elicitor in increasing quercetin-3-O-rhamnoside (quercitrin) content of chrysanthemum (Chrysanthemum morifolium Ramat) callus culture based on harvest time differences. BioTechnologia, 104(3): 289. DOI: https://doi.org/10.5114/bta.2023.130731

Sharma K. & Zafar, R. 2015. Occurrence of taraxerol and taraxasterol in medicinal plants. Pharmacognosy Reviews, 9(17): 19-23. DOI: https://doi.org/10.4103/0973-7847.156317

Sharma, K. & Zafar, R. 2016. Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures. Plant Physiology and Biochemistry, 103: 24-30. DOI: https://doi.org/10.1016/j.plaphy.2016.02.029

Song, Y. 2014. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. Journal of Integrative Plant Biology, 56(2): 106-113. DOI: https://doi.org/10.1111/jipb.12131

Tajadod, G., Farzami, S.M. & Kalami, Z. 2012. B-glucan contents in calli of Oryza sativa L. var Hashemi under different nutritional treatments. Iranian Journal of Plant Physiology, 2(3): 471-475.

Teoh, S.C., Subramaniam, S. & Chew, B.L. 2023. The Effects of 2,4- dichlorophenoxyacetic acid on the induction of callus from cotyledon and hypocotyl explants of butterfly pea (Clitoria ternatea). Malaysian Applied Biology, 52(1): 61-72. DOI: https://doi.org/10.55230/mabjournal.v52i1.2444

Thangjam, R. & Maibam, R.S. 2006. Induction of callus and somatic embryogenesis from cotyledonary explants of Parkia timoriana (DC.) Merr., a multipurpose tree legume. Journal of Food Agriculture and Environment, 4(2): 335.

Turnos, L.J.N. 2021. Blue ternate (Clitoria ternatea L.): nutritive analysis of flowers and seeds. Asian Journal of Fundamental and Applied Sciences, 2(2): 103-112.

Verdeil, J.L., Alemanno, L., Niemenak, N. & Tranbarger, T.J. 2007. Pluripotent versus totipotent plant stem cells: Dependence versus autonomy?. Trends in Plant Science, 12(6): 245-252. DOI: https://doi.org/10.1016/j.tplants.2007.04.002

Wahyuni, D.K., Huda, A., Faizah, S., Purnobasuki, H. & Wardojo, B.P.E., 2020. Effects of light, sucrose concentration and repetitive subculture on callus growth and medically important production in Justicia gendarussa Burm. f. Biotechnology Reports, 27: p.e00473. DOI: https://doi.org/10.1016/j.btre.2020.e00473

Published

27-10-2024

How to Cite

Zakaria, T. N. A. A. T., Tan, H. S., Hassan, Z. ., Subramaniam, S. ., & Chew, B. L. . (2024). The Effects Of 2,4-D, BAP, and Sucrose Concentrations in The Callus Induction of White (Clitoria ternatea var. Albiflora) and Blue Butterfly Pea (Clitoria ternatea). Malaysian Applied Biology, 53(4), 53–63. https://doi.org/10.55230/mabjournal.v53i4.3087

Most read articles by the same author(s)